Spaces:
Build error
Build error
File size: 27,794 Bytes
910e2ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
import os
import sys
sys.path.append(os.path.abspath('.'))
import argparse
import datetime
import numpy as np
import time
import torch
import logging
import json
import math
import random
import diffusers
import transformers
from pathlib import Path
from packaging import version
from copy import deepcopy
from dataset import (
ImageTextDataset,
LengthGroupedVideoTextDataset,
create_image_text_dataloaders,
create_length_grouped_video_text_dataloader
)
from pyramid_dit import (
PyramidDiTForVideoGeneration,
JointTransformerBlock,
FluxSingleTransformerBlock,
FluxTransformerBlock,
)
from trainer_misc import (
init_distributed_mode,
setup_for_distributed,
create_optimizer,
train_one_epoch_with_fsdp,
constant_scheduler,
cosine_scheduler,
)
from trainer_misc import (
is_sequence_parallel_initialized,
init_sequence_parallel_group,
get_sequence_parallel_proc_num,
init_sync_input_group,
get_sync_input_group,
)
from collections import OrderedDict
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
ShardingStrategy,
BackwardPrefetch,
MixedPrecision,
CPUOffload,
StateDictType,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from transformers.models.clip.modeling_clip import CLIPEncoderLayer
from transformers.models.t5.modeling_t5 import T5Block
import accelerate
from accelerate import Accelerator
from accelerate.utils import DistributedType, ProjectConfiguration, set_seed
from accelerate import FullyShardedDataParallelPlugin
from diffusers.utils import is_wandb_available
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from diffusers.optimization import get_scheduler
logger = get_logger(__name__)
def get_args():
parser = argparse.ArgumentParser('Pyramid-Flow Multi-process Training script', add_help=False)
parser.add_argument('--task', default='t2v', type=str, choices=["t2v", "t2i"], help="Training image generation or video generation")
parser.add_argument('--batch_size', default=4, type=int, help="The per device batch size")
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--print_freq', default=20, type=int)
parser.add_argument('--iters_per_epoch', default=2000, type=int)
parser.add_argument('--save_ckpt_freq', default=20, type=int)
# Model parameters
parser.add_argument('--ema_update', action='store_true')
parser.add_argument('--ema_decay', default=0.9999, type=float, metavar='MODEL', help='ema decay rate')
parser.add_argument('--load_ema_model', default='', type=str, help='The ema model checkpoint loading')
parser.add_argument('--model_name', default='pyramid_flux', type=str, help="The Model Architecture Name", choices=["pyramid_flux", "pyramid_mmdit"])
parser.add_argument('--model_path', default='', type=str, help='The pre-trained dit weight path')
parser.add_argument('--model_variant', default='diffusion_transformer_384p', type=str, help='The dit model variant', choices=['diffusion_transformer_768p', 'diffusion_transformer_384p', 'diffusion_transformer_image'])
parser.add_argument('--model_dtype', default='bf16', type=str, help="The Model Dtype: bf16 or fp16", choices=['bf16', 'fp16'])
parser.add_argument('--load_model_ema_to_cpu', action='store_true')
# FSDP condig
parser.add_argument('--use_fsdp', action='store_true')
parser.add_argument('--fsdp_shard_strategy', default='zero2', type=str, choices=['zero2', 'zero3'])
# The training manner config
parser.add_argument('--use_flash_attn', action='store_true')
parser.add_argument('--use_temporal_causal', action='store_true', default=True)
parser.add_argument('--interp_condition_pos', action='store_true', default=True)
parser.add_argument('--sync_video_input', action='store_true', help="whether to sync the video input")
parser.add_argument('--load_text_encoder', action='store_true', help="whether to load the text encoder during training")
parser.add_argument('--load_vae', action='store_true', help="whether to load the video vae during training")
# Sequence Parallel config
parser.add_argument('--use_sequence_parallel', action='store_true')
parser.add_argument('--sp_group_size', default=1, type=int, help="The group size of sequence parallel")
parser.add_argument('--sp_proc_num', default=-1, type=int, help="The number of process used for video training, default=-1 means using all process. This args indicated using how many processes for video training")
# Model input config
parser.add_argument('--max_frames', default=16, type=int, help='number of max video frames')
parser.add_argument('--frame_per_unit', default=1, type=int, help="The number of frames per training unit")
parser.add_argument('--schedule_shift', default=1.0, type=float, help="The flow matching schedule shift")
parser.add_argument('--corrupt_ratio', default=1/3, type=float, help="The corruption ratio for the clean history in AR training")
# Dataset Cconfig
parser.add_argument('--anno_file', default='', type=str, help="The annotation jsonl file")
parser.add_argument('--resolution', default='384p', type=str, help="The input resolution", choices=['384p', '768p'])
# Training set config
parser.add_argument('--dit_pretrained_weight', default='', type=str, help='The pretrained dit checkpoint')
parser.add_argument('--vae_pretrained_weight', default='', type=str,)
parser.add_argument('--not_add_normalize', action='store_true')
parser.add_argument('--use_temporal_pyramid', action='store_true', help="Whether to use the AR temporal pyramid training for video generation")
parser.add_argument('--gradient_checkpointing', action='store_true')
parser.add_argument('--gradient_checkpointing_ratio', type=float, default=0.75, help="The ratio of transformer blocks used for gradient_checkpointing")
parser.add_argument('--gradient_accumulation_steps', default=1, type=int, help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--video_sync_group', default=8, type=int, help="The number of process that accepts the same input video, used for temporal pyramid AR training. \
This contributes to stable AR training. We recommend to set this value to 4, 8 or 16. If you have enough GPUs, set it equals to max_frames (16 for 5s, 32 for 10s), \
make sure to satisfy `max_frames % video_sync_group == 0`")
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_beta1', default=0.9, type=float, metavar='BETA1',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--opt_beta2', default=0.999, type=float, metavar='BETA2',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR',
help='learning rate (default: 5e-5)')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument(
"--lr_scheduler", type=str, default="constant_with_warmup",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument('--warmup_epochs', type=int, default=1, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='epochs to warmup LR, if scheduler supports')
# Dataset parameters
parser.add_argument('--output_dir', type=str, default='',
help='path where to save, empty for no saving')
parser.add_argument('--logging_dir', type=str, default='log', help='path where to tensorboard log')
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
# Distributed Training parameters
parser.add_argument('--device', default='cuda', type=str,
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.set_defaults(auto_resume=True)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--global_step', default=0, type=int, metavar='N', help='The global optimization step')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training', type=str)
return parser.parse_args()
def build_model_runner(args):
model_dtype = args.model_dtype
model_path = args.model_path
model_name = args.model_name
model_variant = args.model_variant
print(f"Load the {model_name} model checkpoint from path: {model_path}, using dtype {model_dtype}")
sample_ratios = [1, 2, 1] # The sample_ratios of each stage
assert args.batch_size % int(sum(sample_ratios)) == 0, "The batchsize should be diivided by sum(sample_ratios)"
runner = PyramidDiTForVideoGeneration(
model_path,
model_dtype,
model_name=model_name,
use_gradient_checkpointing=args.gradient_checkpointing,
gradient_checkpointing_ratio=args.gradient_checkpointing_ratio,
return_log=True,
model_variant=model_variant,
timestep_shift=args.schedule_shift,
stages=[1, 2, 4], # using 3 stages
stage_range=[0, 1/3, 2/3, 1],
sample_ratios=sample_ratios, # The sample proportion in a training batch
use_mixed_training=True,
use_flash_attn=args.use_flash_attn,
load_text_encoder=args.load_text_encoder,
load_vae=args.load_vae,
max_temporal_length=args.max_frames,
frame_per_unit=args.frame_per_unit,
use_temporal_causal=args.use_temporal_causal,
corrupt_ratio=args.corrupt_ratio,
interp_condition_pos=args.interp_condition_pos,
video_sync_group=args.video_sync_group,
)
if args.dit_pretrained_weight:
dit_pretrained_weight = args.dit_pretrained_weight
print(f"Loading the pre-trained DiT checkpoint from {dit_pretrained_weight}")
runner.load_checkpoint(dit_pretrained_weight)
if args.vae_pretrained_weight:
vae_pretrained_weight = args.vae_pretrained_weight
print(f"Loading the pre-trained VAE checkpoint from {vae_pretrained_weight}")
runner.load_vae_checkpoint(vae_pretrained_weight)
return runner
def auto_resume(args, accelerator):
if len(args.resume) > 0:
path = args.resume
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint does not exist. Starting a new training run."
)
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
return initial_global_step
def build_fsdp_plugin(args):
fsdp_plugin = FullyShardedDataParallelPlugin(
sharding_strategy=ShardingStrategy.SHARD_GRAD_OP if args.fsdp_shard_strategy == 'zero2' else ShardingStrategy.FULL_SHARD,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
auto_wrap_policy=ModuleWrapPolicy([FluxSingleTransformerBlock, FluxTransformerBlock, JointTransformerBlock, T5Block, CLIPEncoderLayer]),
cpu_offload=CPUOffload(offload_params=False),
state_dict_type=StateDictType.FULL_STATE_DICT,
state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True),
)
return fsdp_plugin
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
# Initialize the Environment variables throught MPI run
init_distributed_mode(args, init_pytorch_ddp=False) # set `init_pytorch_ddp` to False, since the accelerate will do later
if args.use_fsdp:
fsdp_plugin = build_fsdp_plugin(args)
else:
fsdp_plugin = None
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.model_dtype,
log_with=args.report_to,
project_config=accelerator_project_config,
fsdp_plugin=fsdp_plugin,
)
# To block the print on non main process
setup_for_distributed(accelerator.is_main_process)
# If uses the sequence parallel
if args.use_sequence_parallel:
assert args.sp_group_size > 1, "Sequence Parallel needs group size > 1"
init_sequence_parallel_group(args)
print(f"Using sequence parallel, the parallel size is {args.sp_group_size}")
if args.sp_proc_num == -1:
args.sp_proc_num = accelerator.num_processes # if not specified, all processes are used for video training
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
import wandb
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed, device_specific=True)
device = accelerator.device
# building model
runner = build_model_runner(args)
# For mixed precision training we cast all non-trainable weights to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
# The VAE is in float32 to avoid NaN losses.
if runner.vae:
logger.info(f"Rank {args.rank}: Casting VAE to {weight_dtype}", main_process_only=False)
runner.vae.to(dtype=weight_dtype)
if runner.text_encoder:
logger.info(f"Rank {args.rank}: Casting TextEncoder to {weight_dtype}", main_process_only=False)
runner.text_encoder.to(dtype=weight_dtype)
# building dataloader
global_rank = accelerator.process_index
anno_file = args.anno_file
if args.task == 't2i':
# For image generation training
if args.resolution == '384p':
image_ratios = [1/1, 3/5, 5/3]
image_sizes = [(512, 512), (384, 640), (640, 384)]
else:
assert args.resolution == '768p'
image_ratios = [1/1, 3/5, 5/3]
image_sizes = [(1024, 1024), (768, 1280), (1280, 768)]
image_text_dataset = ImageTextDataset(
anno_file,
add_normalize=not args.not_add_normalize,
ratios=image_ratios,
sizes=image_sizes,
)
train_dataloader = create_image_text_dataloaders(
image_text_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
multi_aspect_ratio=True,
epoch=args.seed,
sizes=image_sizes,
use_distributed=True,
world_size=accelerator.num_processes,
rank=global_rank,
)
else:
assert args.task == 't2v'
# For video generation training
video_text_dataset = LengthGroupedVideoTextDataset(
anno_file,
max_frames=args.max_frames,
resolution=args.resolution,
load_vae_latent=not args.load_vae,
load_text_fea=not args.load_text_encoder,
)
if args.sync_video_input:
assert args.sp_proc_num % args.video_sync_group == 0, "The video_sync_group should be divided by world size"
assert args.max_frames % args.video_sync_group == 0, "The video_sync_group should be divided by num_frames"
train_dataloader = create_length_grouped_video_text_dataloader(
video_text_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
max_frames=args.max_frames,
world_size=args.sp_proc_num // args.video_sync_group,
rank=global_rank // args.video_sync_group,
epoch=args.seed,
use_distributed=True,
)
else:
train_dataloader = create_length_grouped_video_text_dataloader(
video_text_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
max_frames=args.max_frames,
world_size=args.sp_proc_num,
rank=global_rank,
epoch=args.seed,
use_distributed=True,
)
accelerator.wait_for_everyone()
logger.info("Building dataset finished")
# building ema model
model_ema = deepcopy(runner.dit) if args.ema_update else None
if model_ema:
model_ema.eval()
# set the ema model not update by gradient
if model_ema:
model_ema.to(dtype=weight_dtype)
for param in model_ema.parameters():
param.requires_grad = False
# report model details
n_learnable_parameters = sum(p.numel() for p in runner.dit.parameters() if p.requires_grad)
n_fix_parameters = sum(p.numel() for p in runner.dit.parameters() if not p.requires_grad)
logger.info(f'total number of learnable params: {n_learnable_parameters / 1e6} M')
logger.info(f'total number of fixed params in : {n_fix_parameters / 1e6} M')
# `accelerate` 0.16.0 will have better support for customized saving
# Register Hook to load and save model_ema
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
if model_ema:
model_ema_state = model_ema.state_dict()
torch.save(model_ema_state, os.path.join(output_dir, 'pytorch_model_ema.bin'))
def load_model_hook(models, input_dir):
if model_ema:
model_ema_path = os.path.join(input_dir, 'pytorch_model_ema.bin')
if os.path.exists(model_ema_path):
model_ema_state = torch.load(model_ema_path, map_location='cpu')
load_res = model_ema.load_state_dict(model_ema_state)
print(f"Loading ema weights {load_res}")
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Create the Optimizer
optimizer = create_optimizer(args, runner.dit)
logger.info(f"optimizer: {optimizer}")
# Create the LR scheduler
num_training_steps_per_epoch = args.iters_per_epoch
args.max_train_steps = args.epochs * num_training_steps_per_epoch
warmup_iters = args.warmup_epochs * num_training_steps_per_epoch
if args.warmup_steps > 0:
warmup_iters = args.warmup_steps
logger.info(f"LRScheduler: {args.lr_scheduler}, Warmup steps: {warmup_iters * args.gradient_accumulation_steps}")
if args.lr_scheduler == 'cosine':
lr_schedule_values = cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
elif args.lr_scheduler == 'constant_with_warmup':
lr_schedule_values = constant_scheduler(
args.lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
else:
raise NotImplementedError(f"Not Implemented for scheduler {args.lr_scheduler}")
# Wrap the model, optmizer, and scheduler with accelerate
logger.info(f'before accelerator.prepare')
if fsdp_plugin is not None:
logger.info(f'show fsdp configs:')
print('accelerator.state.fsdp_plugin.use_orig_params', accelerator.state.fsdp_plugin.use_orig_params)
print('accelerator.state.fsdp_plugin.sync_module_states', accelerator.state.fsdp_plugin.sync_module_states)
print('accelerator.state.fsdp_plugin.forward_prefetch', accelerator.state.fsdp_plugin.forward_prefetch)
print('accelerator.state.fsdp_plugin.mixed_precision_policy', accelerator.state.fsdp_plugin.mixed_precision_policy)
print('accelerator.state.fsdp_plugin.backward_prefetch', accelerator.state.fsdp_plugin.backward_prefetch)
# Only wrapping the trained dit and huge text encoder
runner.dit, optimizer = accelerator.prepare(runner.dit, optimizer)
# Load the VAE and EMAmodel to GPU
if runner.vae:
runner.vae.to(device)
if runner.text_encoder:
runner.text_encoder.to(device)
logger.info(f'after accelerator.prepare')
logger.info(f'{runner.dit}')
if model_ema and (not args.load_model_ema_to_cpu):
model_ema.to(device)
if accelerator.is_main_process:
accelerator.init_trackers(os.path.basename(args.output_dir), config=vars(args))
# Report the training info
total_batch_size = args.batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info("LR = %.8f" % args.lr)
logger.info("Min LR = %.8f" % args.min_lr)
logger.info("Weigth Decay = %.8f" % args.weight_decay)
logger.info("Batch size = %d" % total_batch_size)
logger.info("Number of training steps = %d" % (num_training_steps_per_epoch * args.epochs))
logger.info("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
# Auto resume the checkpoint
initial_global_step = auto_resume(args, accelerator)
first_epoch = initial_global_step // num_training_steps_per_epoch
# Start Train!
start_time = time.time()
accelerator.wait_for_everyone()
for epoch in range(first_epoch, args.epochs):
train_stats = train_one_epoch_with_fsdp(
runner,
model_ema,
accelerator,
args.model_dtype,
train_dataloader,
optimizer,
lr_schedule_values,
device,
epoch,
args.clip_grad,
start_steps=epoch * num_training_steps_per_epoch,
args=args,
print_freq=args.print_freq,
iters_per_epoch=num_training_steps_per_epoch,
ema_decay=args.ema_decay,
use_temporal_pyramid=args.use_temporal_pyramid,
)
if args.output_dir:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
if accelerator.sync_gradients:
global_step = num_training_steps_per_epoch * (epoch + 1)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path, safe_serialization=False)
logger.info(f"Saved state to {save_path}")
accelerator.wait_for_everyone()
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, 'n_parameters': n_learnable_parameters}
if args.output_dir and accelerator.is_main_process:
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["FSDP_USE_ORIG_PARAMS"] = "true"
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)
|