File size: 5,156 Bytes
910e2ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """

    Output class for the scheduler's step function output.



    Args:

        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):

            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the

            denoising loop.

    """

    prev_sample: torch.Tensor


class DDPMCosineScheduler(SchedulerMixin, ConfigMixin):

    @register_to_config
    def __init__(

        self,

        scaler: float = 1.0,

        s: float = 0.008,

    ):
        self.scaler = scaler
        self.s = torch.tensor([s])
        self._init_alpha_cumprod = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

    def _alpha_cumprod(self, t, device):
        if self.scaler > 1:
            t = 1 - (1 - t) ** self.scaler
        elif self.scaler < 1:
            t = t**self.scaler
        alpha_cumprod = torch.cos(
            (t + self.s.to(device)) / (1 + self.s.to(device)) * torch.pi * 0.5
        ) ** 2 / self._init_alpha_cumprod.to(device)
        return alpha_cumprod.clamp(0.0001, 0.9999)

    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
        """

        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the

        current timestep.



        Args:

            sample (`torch.Tensor`): input sample

            timestep (`int`, optional): current timestep



        Returns:

            `torch.Tensor`: scaled input sample

        """
        return sample

    def set_timesteps(

        self,

        num_inference_steps: int = None,

        timesteps: Optional[List[int]] = None,

        device: Union[str, torch.device] = None,

    ):
        """

        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.



        Args:

            num_inference_steps (`Dict[float, int]`):

                the number of diffusion steps used when generating samples with a pre-trained model. If passed, then

                `timesteps` must be `None`.

            device (`str` or `torch.device`, optional):

                the device to which the timesteps are moved to. {2 / 3: 20, 0.0: 10}

        """
        if timesteps is None:
            timesteps = torch.linspace(1.0, 0.0, num_inference_steps + 1, device=device)
        if not isinstance(timesteps, torch.Tensor):
            timesteps = torch.Tensor(timesteps).to(device)
        self.timesteps = timesteps

    def step(

        self,

        model_output: torch.Tensor,

        timestep: int,

        sample: torch.Tensor,

        generator=None,

        return_dict: bool = True,

    ) -> Union[DDPMSchedulerOutput, Tuple]:
        dtype = model_output.dtype
        device = model_output.device
        t = timestep

        prev_t = self.previous_timestep(t)

        alpha_cumprod = self._alpha_cumprod(t, device).view(t.size(0), *[1 for _ in sample.shape[1:]])
        alpha_cumprod_prev = self._alpha_cumprod(prev_t, device).view(prev_t.size(0), *[1 for _ in sample.shape[1:]])
        alpha = alpha_cumprod / alpha_cumprod_prev

        mu = (1.0 / alpha).sqrt() * (sample - (1 - alpha) * model_output / (1 - alpha_cumprod).sqrt())

        std_noise = randn_tensor(mu.shape, generator=generator, device=model_output.device, dtype=model_output.dtype)
        std = ((1 - alpha) * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)).sqrt() * std_noise
        pred = mu + std * (prev_t != 0).float().view(prev_t.size(0), *[1 for _ in sample.shape[1:]])

        if not return_dict:
            return (pred.to(dtype),)

        return DDPMSchedulerOutput(prev_sample=pred.to(dtype))

    def add_noise(

        self,

        original_samples: torch.Tensor,

        noise: torch.Tensor,

        timesteps: torch.Tensor,

    ) -> torch.Tensor:
        device = original_samples.device
        dtype = original_samples.dtype
        alpha_cumprod = self._alpha_cumprod(timesteps, device=device).view(
            timesteps.size(0), *[1 for _ in original_samples.shape[1:]]
        )
        noisy_samples = alpha_cumprod.sqrt() * original_samples + (1 - alpha_cumprod).sqrt() * noise
        return noisy_samples.to(dtype=dtype)

    def __len__(self):
        return self.config.num_train_timesteps

    def previous_timestep(self, timestep):
        index = (self.timesteps - timestep[0]).abs().argmin().item()
        prev_t = self.timesteps[index + 1][None].expand(timestep.shape[0])
        return prev_t