Pyramid-Flow / dataset /dataloaders.py
sironagasuyagi's picture
Upload folder using huggingface_hub
910e2ad verified
import os
import json
import torch
import time
import random
from typing import Iterable
from collections import OrderedDict
from PIL import Image
from torch.utils.data import Dataset, DataLoader, ConcatDataset, IterableDataset, DistributedSampler, RandomSampler
from torch.utils.data.dataloader import default_collate
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from torchvision.transforms import functional as F
from .bucket_loader import Bucketeer, TemporalLengthBucketeer
class IterLoader:
"""
A wrapper to convert DataLoader as an infinite iterator.
Modified from:
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
"""
def __init__(self, dataloader: DataLoader, use_distributed: bool = False, epoch: int = 0):
self._dataloader = dataloader
self.iter_loader = iter(self._dataloader)
self._use_distributed = use_distributed
self._epoch = epoch
@property
def epoch(self) -> int:
return self._epoch
def __next__(self):
try:
data = next(self.iter_loader)
except StopIteration:
self._epoch += 1
if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
self._dataloader.sampler.set_epoch(self._epoch)
time.sleep(2) # Prevent possible deadlock during epoch transition
self.iter_loader = iter(self._dataloader)
data = next(self.iter_loader)
return data
def __iter__(self):
return self
def __len__(self):
return len(self._dataloader)
def identity(x):
return x
def create_image_text_dataloaders(dataset, batch_size, num_workers,
multi_aspect_ratio=True, epoch=0, sizes=[(512, 512), (384, 640), (640, 384)],
use_distributed=True, world_size=None, rank=None,
):
"""
The dataset has already been splited by different rank
"""
if use_distributed:
assert world_size is not None
assert rank is not None
sampler = DistributedSampler(
dataset,
shuffle=True,
num_replicas=world_size,
rank=rank,
seed=epoch,
)
else:
sampler = RandomSampler(dataset)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
sampler=sampler,
collate_fn=identity if multi_aspect_ratio else default_collate,
drop_last=True,
)
if multi_aspect_ratio:
dataloader_iterator = Bucketeer(
dataloader,
sizes=sizes,
is_infinite=True, epoch=epoch,
)
else:
dataloader_iterator = iter(dataloader)
# To make it infinite
loader = IterLoader(dataloader_iterator, use_distributed=False, epoch=epoch)
return loader
def create_length_grouped_video_text_dataloader(dataset, batch_size, num_workers, max_frames,
world_size=None, rank=None, epoch=0, use_distributed=False):
if use_distributed:
assert world_size is not None
assert rank is not None
sampler = DistributedSampler(
dataset,
shuffle=True,
num_replicas=world_size,
rank=rank,
seed=epoch,
)
else:
sampler = RandomSampler(dataset)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
sampler=sampler,
collate_fn=identity,
drop_last=True,
)
# make it infinite
dataloader_iterator = TemporalLengthBucketeer(
dataloader,
max_frames=max_frames,
epoch=epoch,
)
return dataloader_iterator
def create_mixed_dataloaders(
dataset, batch_size, num_workers, world_size=None, rank=None, epoch=0,
image_mix_ratio=0.1, use_image_video_mixed_training=True,
):
"""
The video & image mixed training dataloader builder
"""
assert world_size is not None
assert rank is not None
image_gpus = max(1, int(world_size * image_mix_ratio))
if use_image_video_mixed_training:
video_gpus = world_size - image_gpus
else:
# only use video data
video_gpus = world_size
image_gpus = 0
print(f"{image_gpus} gpus for image, {video_gpus} gpus for video")
if rank < video_gpus:
sampler = DistributedSampler(
dataset,
shuffle=True,
num_replicas=video_gpus,
rank=rank,
seed=epoch,
)
else:
sampler = DistributedSampler(
dataset,
shuffle=True,
num_replicas=image_gpus,
rank=rank - video_gpus,
seed=epoch,
)
loader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
sampler=sampler,
collate_fn=default_collate,
drop_last=True,
)
# To make it infinite
loader = IterLoader(loader, use_distributed=True, epoch=epoch)
return loader