Pyramid-Flow / dataset /dataset_cls.py
sironagasuyagi's picture
Upload folder using huggingface_hub
910e2ad verified
import os
import json
import jsonlines
import torch
import math
import random
import cv2
from tqdm import tqdm
from collections import OrderedDict
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import numpy as np
import subprocess
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from torchvision.transforms import functional as F
class ImageTextDataset(Dataset):
"""
Usage:
The dataset class for image-text pairs, used for image generation training
It supports multi-aspect ratio training
params:
anno_file: The annotation file list
add_normalize: whether to normalize the input image pixel to [-1, 1], default: True
ratios: The aspect ratios during training, format: width / height
sizes: The resoultion of training images, format: (width, height)
"""
def __init__(
self, anno_file, add_normalize=True,
ratios=[1/1, 3/5, 5/3],
sizes=[(1024, 1024), (768, 1280), (1280, 768)],
crop_mode='random', p_random_ratio=0.0,
):
# Ratios and Sizes : (w h)
super().__init__()
self.image_annos = []
if not isinstance(anno_file, list):
anno_file = [anno_file]
for anno_file_ in anno_file:
print(f"Load image annotation files from {anno_file_}")
with jsonlines.open(anno_file_, 'r') as reader:
for item in reader:
self.image_annos.append(item)
print(f"Totally Remained {len(self.image_annos)} images")
transform_list = [
transforms.ToTensor(),
]
if add_normalize:
transform_list.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
self.transform = transforms.Compose(transform_list)
print(f"Transform List is {transform_list}")
assert crop_mode in ['center', 'random']
self.crop_mode = crop_mode
self.ratios = ratios
self.sizes = sizes
self.p_random_ratio = p_random_ratio
def get_closest_size(self, x):
if self.p_random_ratio > 0 and np.random.rand() < self.p_random_ratio:
best_size_idx = np.random.randint(len(self.ratios))
else:
w, h = x.width, x.height
best_size_idx = np.argmin([abs(w/h-r) for r in self.ratios])
return self.sizes[best_size_idx]
def get_resize_size(self, orig_size, tgt_size):
if (tgt_size[1]/tgt_size[0] - 1) * (orig_size[1]/orig_size[0] - 1) >= 0:
alt_min = int(math.ceil(max(tgt_size)*min(orig_size)/max(orig_size)))
resize_size = max(alt_min, min(tgt_size))
else:
alt_max = int(math.ceil(min(tgt_size)*max(orig_size)/min(orig_size)))
resize_size = max(alt_max, max(tgt_size))
return resize_size
def __len__(self):
return len(self.image_annos)
def __getitem__(self, index):
image_anno = self.image_annos[index]
try:
img = Image.open(image_anno['image']).convert("RGB")
text = image_anno['text']
assert isinstance(text, str), "Text should be str"
size = self.get_closest_size(img)
resize_size = self.get_resize_size((img.width, img.height), size)
img = transforms.functional.resize(img, resize_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True)
if self.crop_mode == 'center':
img = transforms.functional.center_crop(img, (size[1], size[0]))
elif self.crop_mode == 'random':
img = transforms.RandomCrop((size[1], size[0]))(img)
else:
img = transforms.functional.center_crop(img, (size[1], size[0]))
image_tensor = self.transform(img)
return {
"video": image_tensor, # using keyname `video`, to be compatible with video
"text" : text,
"identifier": 'image',
}
except Exception as e:
print(f'Load Image Error with {e}')
return self.__getitem__(random.randint(0, self.__len__() - 1))
class LengthGroupedVideoTextDataset(Dataset):
"""
Usage:
The dataset class for video-text pairs, used for video generation training
It groups the video with the same frames together
Now only supporting fixed resolution during training
params:
anno_file: The annotation file list
max_frames: The maximum temporal lengths (This is the vae latent temporal length) 16 => (16 - 1) * 8 + 1 = 121 frames
load_vae_latent: Loading the pre-extracted vae latents during training, we recommend to extract the latents in advance
to reduce the time cost per batch
load_text_fea: Loading the pre-extracted text features during training, we recommend to extract the prompt textual features
in advance, since the T5 encoder will cost many GPU memories
"""
def __init__(self, anno_file, max_frames=16, resolution='384p', load_vae_latent=True, load_text_fea=True):
super().__init__()
self.video_annos = []
self.max_frames = max_frames
self.load_vae_latent = load_vae_latent
self.load_text_fea = load_text_fea
self.resolution = resolution
assert load_vae_latent, "Now only support loading vae latents, we will support to directly load video frames in the future"
if not isinstance(anno_file, list):
anno_file = [anno_file]
for anno_file_ in anno_file:
with jsonlines.open(anno_file_, 'r') as reader:
for item in tqdm(reader):
self.video_annos.append(item)
print(f"Totally Remained {len(self.video_annos)} videos")
def __len__(self):
return len(self.video_annos)
def __getitem__(self, index):
try:
video_anno = self.video_annos[index]
text = video_anno['text']
latent_path = video_anno['latent']
latent = torch.load(latent_path, map_location='cpu') # loading the pre-extracted video latents
# TODO: remove the hard code latent shape checking
if self.resolution == '384p':
assert latent.shape[-1] == 640 // 8
assert latent.shape[-2] == 384 // 8
else:
assert self.resolution == '768p'
assert latent.shape[-1] == 1280 // 8
assert latent.shape[-2] == 768 // 8
cur_temp = latent.shape[2]
cur_temp = min(cur_temp, self.max_frames)
video_latent = latent[:,:,:cur_temp].float()
assert video_latent.shape[1] == 16
if self.load_text_fea:
text_fea_path = video_anno['text_fea']
text_fea = torch.load(text_fea_path, map_location='cpu')
return {
'video': video_latent,
'prompt_embed': text_fea['prompt_embed'],
'prompt_attention_mask': text_fea['prompt_attention_mask'],
'pooled_prompt_embed': text_fea['pooled_prompt_embed'],
"identifier": 'video',
}
else:
return {
'video': video_latent,
'text': text,
"identifier": 'video',
}
except Exception as e:
print(f'Load Video Error with {e}')
return self.__getitem__(random.randint(0, self.__len__() - 1))
class VideoFrameProcessor:
# load a video and transform
def __init__(self, resolution=256, num_frames=24, add_normalize=True, sample_fps=24):
image_size = resolution
transform_list = [
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC, antialias=True),
transforms.CenterCrop(image_size),
]
if add_normalize:
transform_list.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
print(f"Transform List is {transform_list}")
self.num_frames = num_frames
self.transform = transforms.Compose(transform_list)
self.sample_fps = sample_fps
def __call__(self, video_path):
try:
video_capture = cv2.VideoCapture(video_path)
fps = video_capture.get(cv2.CAP_PROP_FPS)
frames = []
while True:
flag, frame = video_capture.read()
if not flag:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = torch.from_numpy(frame)
frame = frame.permute(2, 0, 1)
frames.append(frame)
video_capture.release()
sample_fps = self.sample_fps
interval = max(int(fps / sample_fps), 1)
frames = frames[::interval]
if len(frames) < self.num_frames:
num_frame_to_pack = self.num_frames - len(frames)
recurrent_num = num_frame_to_pack // len(frames)
frames = frames + recurrent_num * frames + frames[:(num_frame_to_pack % len(frames))]
assert len(frames) >= self.num_frames, f'{len(frames)}'
start_indexs = list(range(0, max(0, len(frames) - self.num_frames + 1)))
start_index = random.choice(start_indexs)
filtered_frames = frames[start_index : start_index+self.num_frames]
assert len(filtered_frames) == self.num_frames, f"The sampled frames should equals to {self.num_frames}"
filtered_frames = torch.stack(filtered_frames).float() / 255
filtered_frames = self.transform(filtered_frames)
filtered_frames = filtered_frames.permute(1, 0, 2, 3)
return filtered_frames, None
except Exception as e:
print(f"Load video: {video_path} Error, Exception {e}")
return None, None
class VideoDataset(Dataset):
def __init__(self, anno_file, resolution=256, max_frames=6, add_normalize=True):
super().__init__()
self.video_annos = []
self.max_frames = max_frames
if not isinstance(anno_file, list):
anno_file = [anno_file]
print(f"The training video clip frame number is {max_frames} ")
for anno_file_ in anno_file:
print(f"Load annotation file from {anno_file_}")
with jsonlines.open(anno_file_, 'r') as reader:
for item in tqdm(reader):
self.video_annos.append(item)
print(f"Totally Remained {len(self.video_annos)} videos")
self.video_processor = VideoFrameProcessor(resolution, max_frames, add_normalize)
def __len__(self):
return len(self.video_annos)
def __getitem__(self, index):
video_anno = self.video_annos[index]
video_path = video_anno['video']
try:
video_tensors, video_frames = self.video_processor(video_path)
assert video_tensors.shape[1] == self.max_frames
return {
"video": video_tensors,
"identifier": 'video',
}
except Exception as e:
print('Loading Video Error with {e}')
return self.__getitem__(random.randint(0, self.__len__() - 1))
class ImageDataset(Dataset):
def __init__(self, anno_file, resolution=256, max_frames=8, add_normalize=True):
super().__init__()
self.image_annos = []
self.max_frames = max_frames
image_paths = []
if not isinstance(anno_file, list):
anno_file = [anno_file]
for anno_file_ in anno_file:
print(f"Load annotation file from {anno_file_}")
with jsonlines.open(anno_file_, 'r') as reader:
for item in tqdm(reader):
image_paths.append(item['image'])
print(f"Totally Remained {len(image_paths)} images")
# pack multiple frames
for idx in range(0, len(image_paths), self.max_frames):
image_path_shard = image_paths[idx : idx + self.max_frames]
if len(image_path_shard) < self.max_frames:
image_path_shard = image_path_shard + image_paths[:self.max_frames - len(image_path_shard)]
assert len(image_path_shard) == self.max_frames
self.image_annos.append(image_path_shard)
image_size = resolution
transform_list = [
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC, antialias=True),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
if add_normalize:
transform_list.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
print(f"Transform List is {transform_list}")
self.transform = transforms.Compose(transform_list)
def __len__(self):
return len(self.image_annos)
def __getitem__(self, index):
image_paths = self.image_annos[index]
try:
packed_pil_frames = [Image.open(image_path).convert("RGB") for image_path in image_paths]
filtered_frames = [self.transform(frame) for frame in packed_pil_frames]
filtered_frames = torch.stack(filtered_frames) # [t, c, h, w]
filtered_frames = filtered_frames.permute(1, 0, 2, 3) # [c, t, h, w]
return {
"video": filtered_frames,
"identifier": 'image',
}
except Exception as e:
print(f'Load Images Error with {e}')
return self.__getitem__(random.randint(0, self.__len__() - 1))