Spaces:
Build error
Build error
from typing import Any, Dict, List, Optional, Union | |
import torch | |
import os | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from tqdm import tqdm | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils import is_torch_version | |
from .modeling_normalization import AdaLayerNormContinuous | |
from .modeling_embedding import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings | |
from .modeling_flux_block import FluxTransformerBlock, FluxSingleTransformerBlock | |
from trainer_misc import ( | |
is_sequence_parallel_initialized, | |
get_sequence_parallel_group, | |
get_sequence_parallel_world_size, | |
get_sequence_parallel_rank, | |
all_to_all, | |
) | |
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: | |
assert dim % 2 == 0, "The dimension must be even." | |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | |
omega = 1.0 / (theta**scale) | |
batch_size, seq_length = pos.shape | |
out = torch.einsum("...n,d->...nd", pos, omega) | |
cos_out = torch.cos(out) | |
sin_out = torch.sin(out) | |
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) | |
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) | |
return out.float() | |
class EmbedND(nn.Module): | |
def __init__(self, dim: int, theta: int, axes_dim: List[int]): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: torch.Tensor) -> torch.Tensor: | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(2) | |
class PyramidFluxTransformer(ModelMixin, ConfigMixin): | |
""" | |
The Transformer model introduced in Flux. | |
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
Parameters: | |
patch_size (`int`): Patch size to turn the input data into small patches. | |
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. | |
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. | |
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
patch_size: int = 1, | |
in_channels: int = 64, | |
num_layers: int = 19, | |
num_single_layers: int = 38, | |
attention_head_dim: int = 64, | |
num_attention_heads: int = 24, | |
joint_attention_dim: int = 4096, | |
pooled_projection_dim: int = 768, | |
axes_dims_rope: List[int] = [16, 24, 24], | |
use_flash_attn: bool = False, | |
use_temporal_causal: bool = True, | |
interp_condition_pos: bool = True, | |
use_gradient_checkpointing: bool = False, | |
gradient_checkpointing_ratio: float = 0.6, | |
): | |
super().__init__() | |
self.out_channels = in_channels | |
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
self.pos_embed = EmbedND(dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope) | |
self.time_text_embed = CombinedTimestepTextProjEmbeddings( | |
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim | |
) | |
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) | |
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
FluxTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
use_flash_attn=use_flash_attn, | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
FluxSingleTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
use_flash_attn=use_flash_attn, | |
) | |
for i in range(self.config.num_single_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
self.gradient_checkpointing = use_gradient_checkpointing | |
self.gradient_checkpointing_ratio = gradient_checkpointing_ratio | |
self.use_temporal_causal = use_temporal_causal | |
if self.use_temporal_causal: | |
print("Using temporal causal attention") | |
self.use_flash_attn = use_flash_attn | |
if self.use_flash_attn: | |
print("Using Flash attention") | |
self.patch_size = 2 # hard-code for now | |
# init weights | |
self.initialize_weights() | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize all the conditioning to normal init | |
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_1.weight, std=0.02) | |
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_2.weight, std=0.02) | |
nn.init.normal_(self.time_text_embed.text_embedder.linear_1.weight, std=0.02) | |
nn.init.normal_(self.time_text_embed.text_embedder.linear_2.weight, std=0.02) | |
nn.init.normal_(self.context_embedder.weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.transformer_blocks: | |
nn.init.constant_(block.norm1.linear.weight, 0) | |
nn.init.constant_(block.norm1.linear.bias, 0) | |
nn.init.constant_(block.norm1_context.linear.weight, 0) | |
nn.init.constant_(block.norm1_context.linear.bias, 0) | |
for block in self.single_transformer_blocks: | |
nn.init.constant_(block.norm.linear.weight, 0) | |
nn.init.constant_(block.norm.linear.bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.norm_out.linear.weight, 0) | |
nn.init.constant_(self.norm_out.linear.bias, 0) | |
nn.init.constant_(self.proj_out.weight, 0) | |
nn.init.constant_(self.proj_out.bias, 0) | |
def _prepare_image_ids(self, batch_size, temp, height, width, train_height, train_width, device, start_time_stamp=0): | |
latent_image_ids = torch.zeros(temp, height, width, 3) | |
# Temporal Rope | |
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(start_time_stamp, start_time_stamp + temp)[:, None, None] | |
# height Rope | |
if height != train_height: | |
height_pos = F.interpolate(torch.arange(train_height)[None, None, :].float(), height, mode='linear').squeeze(0, 1) | |
else: | |
height_pos = torch.arange(train_height).float() | |
latent_image_ids[..., 1] = latent_image_ids[..., 1] + height_pos[None, :, None] | |
# width rope | |
if width != train_width: | |
width_pos = F.interpolate(torch.arange(train_width)[None, None, :].float(), width, mode='linear').squeeze(0, 1) | |
else: | |
width_pos = torch.arange(train_width).float() | |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + width_pos[None, None, :] | |
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1) | |
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c') | |
return latent_image_ids.to(device=device) | |
def _prepare_pyramid_image_ids(self, sample, batch_size, device): | |
image_ids_list = [] | |
for i_b, sample_ in enumerate(sample): | |
if not isinstance(sample_, list): | |
sample_ = [sample_] | |
cur_image_ids = [] | |
start_time_stamp = 0 | |
train_height = sample_[-1].shape[-2] // self.patch_size | |
train_width = sample_[-1].shape[-1] // self.patch_size | |
for clip_ in sample_: | |
_, _, temp, height, width = clip_.shape | |
height = height // self.patch_size | |
width = width // self.patch_size | |
cur_image_ids.append(self._prepare_image_ids(batch_size, temp, height, width, train_height, train_width, device, start_time_stamp=start_time_stamp)) | |
start_time_stamp += temp | |
cur_image_ids = torch.cat(cur_image_ids, dim=1) | |
image_ids_list.append(cur_image_ids) | |
return image_ids_list | |
def merge_input(self, sample, encoder_hidden_length, encoder_attention_mask): | |
""" | |
Merge the input video with different resolutions into one sequence | |
Sample: From low resolution to high resolution | |
""" | |
if isinstance(sample[0], list): | |
device = sample[0][-1].device | |
pad_batch_size = sample[0][-1].shape[0] | |
else: | |
device = sample[0].device | |
pad_batch_size = sample[0].shape[0] | |
num_stages = len(sample) | |
height_list = [];width_list = [];temp_list = [] | |
trainable_token_list = [] | |
for i_b, sample_ in enumerate(sample): | |
if isinstance(sample_, list): | |
sample_ = sample_[-1] | |
_, _, temp, height, width = sample_.shape | |
height = height // self.patch_size | |
width = width // self.patch_size | |
temp_list.append(temp) | |
height_list.append(height) | |
width_list.append(width) | |
trainable_token_list.append(height * width * temp) | |
# prepare the RoPE IDs, | |
image_ids_list = self._prepare_pyramid_image_ids(sample, pad_batch_size, device) | |
text_ids = torch.zeros(pad_batch_size, encoder_attention_mask.shape[1], 3).to(device=device) | |
input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list] | |
image_rotary_emb = [self.pos_embed(input_ids) for input_ids in input_ids_list] # [bs, seq_len, 1, head_dim // 2, 2, 2] | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
concat_output = True if self.training else False | |
image_rotary_emb = [all_to_all(x_.repeat(1, 1, sp_group_size, 1, 1, 1), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output) for x_ in image_rotary_emb] | |
input_ids_list = [all_to_all(input_ids.repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output) for input_ids in input_ids_list] | |
hidden_states, hidden_length = [], [] | |
for sample_ in sample: | |
video_tokens = [] | |
for each_latent in sample_: | |
each_latent = rearrange(each_latent, 'b c t h w -> b t h w c') | |
each_latent = rearrange(each_latent, 'b t (h p1) (w p2) c -> b (t h w) (p1 p2 c)', p1=self.patch_size, p2=self.patch_size) | |
video_tokens.append(each_latent) | |
video_tokens = torch.cat(video_tokens, dim=1) | |
video_tokens = self.x_embedder(video_tokens) | |
hidden_states.append(video_tokens) | |
hidden_length.append(video_tokens.shape[1]) | |
# prepare the attention mask | |
if self.use_flash_attn: | |
attention_mask = None | |
indices_list = [] | |
for i_p, length in enumerate(hidden_length): | |
pad_attention_mask = torch.ones((pad_batch_size, length), dtype=encoder_attention_mask.dtype).to(device) | |
pad_attention_mask = torch.cat([encoder_attention_mask[i_p::num_stages], pad_attention_mask], dim=1) | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
pad_attention_mask = all_to_all(pad_attention_mask.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) | |
pad_attention_mask = pad_attention_mask.squeeze(2) | |
seqlens_in_batch = pad_attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(pad_attention_mask.flatten(), as_tuple=False).flatten() | |
indices_list.append( | |
{ | |
'indices': indices, | |
'seqlens_in_batch': seqlens_in_batch, | |
} | |
) | |
encoder_attention_mask = indices_list | |
else: | |
assert encoder_attention_mask.shape[1] == encoder_hidden_length | |
real_batch_size = encoder_attention_mask.shape[0] | |
# prepare text ids | |
text_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, encoder_hidden_length) | |
text_ids = text_ids.to(device) | |
text_ids[encoder_attention_mask == 0] = 0 | |
# prepare image ids | |
image_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, max(hidden_length)) | |
image_ids = image_ids.to(device) | |
image_ids_list = [] | |
for i_p, length in enumerate(hidden_length): | |
image_ids_list.append(image_ids[i_p::num_stages][:, :length]) | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
concat_output = True if self.training else False | |
text_ids = all_to_all(text_ids.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output).squeeze(2) | |
image_ids_list = [all_to_all(image_ids_.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output).squeeze(2) for image_ids_ in image_ids_list] | |
attention_mask = [] | |
for i_p in range(len(hidden_length)): | |
image_ids = image_ids_list[i_p] | |
token_ids = torch.cat([text_ids[i_p::num_stages], image_ids], dim=1) | |
stage_attention_mask = rearrange(token_ids, 'b i -> b 1 i 1') == rearrange(token_ids, 'b j -> b 1 1 j') # [bs, 1, q_len, k_len] | |
if self.use_temporal_causal: | |
input_order_ids = input_ids_list[i_p][:,:,0] | |
temporal_causal_mask = rearrange(input_order_ids, 'b i -> b 1 i 1') >= rearrange(input_order_ids, 'b j -> b 1 1 j') | |
stage_attention_mask = stage_attention_mask & temporal_causal_mask | |
attention_mask.append(stage_attention_mask) | |
return hidden_states, hidden_length, temp_list, height_list, width_list, trainable_token_list, encoder_attention_mask, attention_mask, image_rotary_emb | |
def split_output(self, batch_hidden_states, hidden_length, temps, heights, widths, trainable_token_list): | |
# To split the hidden states | |
batch_size = batch_hidden_states.shape[0] | |
output_hidden_list = [] | |
batch_hidden_states = torch.split(batch_hidden_states, hidden_length, dim=1) | |
if is_sequence_parallel_initialized(): | |
sp_group_size = get_sequence_parallel_world_size() | |
if self.training: | |
batch_size = batch_size // sp_group_size | |
for i_p, length in enumerate(hidden_length): | |
width, height, temp = widths[i_p], heights[i_p], temps[i_p] | |
trainable_token_num = trainable_token_list[i_p] | |
hidden_states = batch_hidden_states[i_p] | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
if not self.training: | |
hidden_states = hidden_states.repeat(sp_group_size, 1, 1) | |
hidden_states = all_to_all(hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1) | |
# only the trainable token are taking part in loss computation | |
hidden_states = hidden_states[:, -trainable_token_num:] | |
# unpatchify | |
hidden_states = hidden_states.reshape( | |
shape=(batch_size, temp, height, width, self.patch_size, self.patch_size, self.out_channels // 4) | |
) | |
hidden_states = rearrange(hidden_states, "b t h w p1 p2 c -> b t (h p1) (w p2) c") | |
hidden_states = rearrange(hidden_states, "b t h w c -> b c t h w") | |
output_hidden_list.append(hidden_states) | |
return output_hidden_list | |
def forward( | |
self, | |
sample: torch.FloatTensor, # [num_stages] | |
encoder_hidden_states: torch.Tensor = None, | |
encoder_attention_mask: torch.FloatTensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep_ratio: torch.LongTensor = None, | |
): | |
temb = self.time_text_embed(timestep_ratio, pooled_projections) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
encoder_hidden_length = encoder_hidden_states.shape[1] | |
# Get the input sequence | |
hidden_states, hidden_length, temps, heights, widths, trainable_token_list, encoder_attention_mask, attention_mask, \ | |
image_rotary_emb = self.merge_input(sample, encoder_hidden_length, encoder_attention_mask) | |
# split the long latents if necessary | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
concat_output = True if self.training else False | |
# sync the input hidden states | |
batch_hidden_states = [] | |
for i_p, hidden_states_ in enumerate(hidden_states): | |
assert hidden_states_.shape[1] % sp_group_size == 0, "The sequence length should be divided by sequence parallel size" | |
hidden_states_ = all_to_all(hidden_states_, sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output) | |
hidden_length[i_p] = hidden_length[i_p] // sp_group_size | |
batch_hidden_states.append(hidden_states_) | |
# sync the encoder hidden states | |
hidden_states = torch.cat(batch_hidden_states, dim=1) | |
encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output) | |
temb = all_to_all(temb.unsqueeze(1).repeat(1, sp_group_size, 1), sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output) | |
temb = temb.squeeze(1) | |
else: | |
hidden_states = torch.cat(hidden_states, dim=1) | |
for index_block, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing and (index_block <= int(len(self.transformer_blocks) * self.gradient_checkpointing_ratio)): | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
temb, | |
attention_mask, | |
hidden_length, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
temb=temb, | |
attention_mask=attention_mask, | |
hidden_length=hidden_length, | |
image_rotary_emb=image_rotary_emb, | |
) | |
# remerge for single attention block | |
num_stages = len(hidden_length) | |
batch_hidden_states = list(torch.split(hidden_states, hidden_length, dim=1)) | |
concat_hidden_length = [] | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1) | |
for i_p in range(len(hidden_length)): | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=0, gather_dim=1) | |
batch_hidden_states[i_p] = torch.cat([encoder_hidden_states[i_p::num_stages], batch_hidden_states[i_p]], dim=1) | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=1, gather_dim=0) | |
concat_hidden_length.append(batch_hidden_states[i_p].shape[1]) | |
hidden_states = torch.cat(batch_hidden_states, dim=1) | |
for index_block, block in enumerate(self.single_transformer_blocks): | |
if self.training and self.gradient_checkpointing and (index_block <= int(len(self.single_transformer_blocks) * self.gradient_checkpointing_ratio)): | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
temb, | |
encoder_attention_mask, | |
attention_mask, | |
concat_hidden_length, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
encoder_attention_mask=encoder_attention_mask, # used for | |
attention_mask=attention_mask, | |
hidden_length=concat_hidden_length, | |
image_rotary_emb=image_rotary_emb, | |
) | |
batch_hidden_states = list(torch.split(hidden_states, concat_hidden_length, dim=1)) | |
for i_p in range(len(concat_hidden_length)): | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=0, gather_dim=1) | |
batch_hidden_states[i_p] = batch_hidden_states[i_p][:, encoder_hidden_length :, ...] | |
if is_sequence_parallel_initialized(): | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=1, gather_dim=0) | |
hidden_states = torch.cat(batch_hidden_states, dim=1) | |
hidden_states = self.norm_out(hidden_states, temb, hidden_length=hidden_length) | |
hidden_states = self.proj_out(hidden_states) | |
output = self.split_output(hidden_states, hidden_length, temps, heights, widths, trainable_token_list) | |
return output |