Pyramid-Flow / pyramid_dit /pyramid_dit_for_video_gen_pipeline.py
sironagasuyagi's picture
Upload folder using huggingface_hub
910e2ad verified
import torch
import os
import gc
import sys
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
import math
import random
import PIL
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
from accelerate import Accelerator, cpu_offload
from diffusion_schedulers import PyramidFlowMatchEulerDiscreteScheduler
from video_vae.modeling_causal_vae import CausalVideoVAE
from trainer_misc import (
all_to_all,
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_group_rank,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_rank,
)
from .mmdit_modules import (
PyramidDiffusionMMDiT,
SD3TextEncoderWithMask,
)
from .flux_modules import (
PyramidFluxTransformer,
FluxTextEncoderWithMask,
)
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def build_pyramid_dit(
model_name : str,
model_path : str,
torch_dtype,
use_flash_attn : bool,
use_mixed_training: bool,
interp_condition_pos: bool = True,
use_gradient_checkpointing: bool = False,
use_temporal_causal: bool = True,
gradient_checkpointing_ratio: float = 0.6,
):
model_dtype = torch.float32 if use_mixed_training else torch_dtype
if model_name == "pyramid_flux":
dit = PyramidFluxTransformer.from_pretrained(
model_path, torch_dtype=model_dtype,
use_gradient_checkpointing=use_gradient_checkpointing,
gradient_checkpointing_ratio=gradient_checkpointing_ratio,
use_flash_attn=use_flash_attn, use_temporal_causal=use_temporal_causal,
interp_condition_pos=interp_condition_pos, axes_dims_rope=[16, 24, 24],
)
elif model_name == "pyramid_mmdit":
dit = PyramidDiffusionMMDiT.from_pretrained(
model_path, torch_dtype=model_dtype, use_gradient_checkpointing=use_gradient_checkpointing,
gradient_checkpointing_ratio=gradient_checkpointing_ratio,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
else:
raise NotImplementedError(f"Unsupported DiT architecture, please set the model_name to `pyramid_flux` or `pyramid_mmdit`")
return dit
def build_text_encoder(
model_name : str,
model_path : str,
torch_dtype,
load_text_encoder: bool = True,
):
# The text encoder
if load_text_encoder:
if model_name == "pyramid_flux":
text_encoder = FluxTextEncoderWithMask(model_path, torch_dtype=torch_dtype)
elif model_name == "pyramid_mmdit":
text_encoder = SD3TextEncoderWithMask(model_path, torch_dtype=torch_dtype)
else:
raise NotImplementedError(f"Unsupported Text Encoder architecture, please set the model_name to `pyramid_flux` or `pyramid_mmdit`")
else:
text_encoder = None
return text_encoder
class PyramidDiTForVideoGeneration:
"""
The pyramid dit for both image and video generation, The running class wrapper
This class is mainly for fixed unit implementation: 1 + n + n + n
"""
def __init__(self, model_path, model_dtype='bf16', model_name='pyramid_mmdit', use_gradient_checkpointing=False,
return_log=True, model_variant="diffusion_transformer_768p", timestep_shift=1.0, stage_range=[0, 1/3, 2/3, 1],
sample_ratios=[1, 1, 1], scheduler_gamma=1/3, use_mixed_training=False, use_flash_attn=False,
load_text_encoder=True, load_vae=True, max_temporal_length=31, frame_per_unit=1, use_temporal_causal=True,
corrupt_ratio=1/3, interp_condition_pos=True, stages=[1, 2, 4], video_sync_group=8, gradient_checkpointing_ratio=0.6, **kwargs,
):
super().__init__()
if model_dtype == 'bf16':
torch_dtype = torch.bfloat16
elif model_dtype == 'fp16':
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
self.stages = stages
self.sample_ratios = sample_ratios
self.corrupt_ratio = corrupt_ratio
dit_path = os.path.join(model_path, model_variant)
# The dit
self.dit = build_pyramid_dit(
model_name, dit_path, torch_dtype,
use_flash_attn=use_flash_attn, use_mixed_training=use_mixed_training,
interp_condition_pos=interp_condition_pos, use_gradient_checkpointing=use_gradient_checkpointing,
use_temporal_causal=use_temporal_causal, gradient_checkpointing_ratio=gradient_checkpointing_ratio,
)
# The text encoder
self.text_encoder = build_text_encoder(
model_name, model_path, torch_dtype, load_text_encoder=load_text_encoder,
)
self.load_text_encoder = load_text_encoder
# The base video vae decoder
if load_vae:
self.vae = CausalVideoVAE.from_pretrained(os.path.join(model_path, 'causal_video_vae'), torch_dtype=torch_dtype, interpolate=False)
# Freeze vae
for parameter in self.vae.parameters():
parameter.requires_grad = False
else:
self.vae = None
self.load_vae = load_vae
# For the image latent
if model_name == "pyramid_flux":
self.vae_shift_factor = -0.04
self.vae_scale_factor = 1 / 1.8726
elif model_name == "pyramid_mmdit":
self.vae_shift_factor = 0.1490
self.vae_scale_factor = 1 / 1.8415
else:
raise NotImplementedError(f"Unsupported model name : {model_name}")
# For the video latent
self.vae_video_shift_factor = -0.2343
self.vae_video_scale_factor = 1 / 3.0986
self.downsample = 8
# Configure the video training hyper-parameters
# The video sequence: one frame + N * unit
self.frame_per_unit = frame_per_unit
self.max_temporal_length = max_temporal_length
assert (max_temporal_length - 1) % frame_per_unit == 0, "The frame number should be divided by the frame number per unit"
self.num_units_per_video = 1 + ((max_temporal_length - 1) // frame_per_unit) + int(sum(sample_ratios))
self.scheduler = PyramidFlowMatchEulerDiscreteScheduler(
shift=timestep_shift, stages=len(self.stages),
stage_range=stage_range, gamma=scheduler_gamma,
)
print(f"The start sigmas and end sigmas of each stage is Start: {self.scheduler.start_sigmas}, End: {self.scheduler.end_sigmas}, Ori_start: {self.scheduler.ori_start_sigmas}")
self.cfg_rate = 0.1
self.return_log = return_log
self.use_flash_attn = use_flash_attn
self.model_name = model_name
self.sequential_offload_enabled = False
self.accumulate_steps = 0
self.video_sync_group = video_sync_group
def _enable_sequential_cpu_offload(self, model):
self.sequential_offload_enabled = True
torch_device = torch.device("cuda")
device_type = torch_device.type
device = torch.device(f"{device_type}:0")
offload_buffers = len(model._parameters) > 0
cpu_offload(model, device, offload_buffers=offload_buffers)
def enable_sequential_cpu_offload(self):
self._enable_sequential_cpu_offload(self.text_encoder)
self._enable_sequential_cpu_offload(self.dit)
def load_checkpoint(self, checkpoint_path, model_key='model', **kwargs):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
dit_checkpoint = OrderedDict()
for key in checkpoint:
if key.startswith('vae') or key.startswith('text_encoder'):
continue
if key.startswith('dit'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
dit_checkpoint[new_key] = checkpoint[key]
else:
dit_checkpoint[key] = checkpoint[key]
load_result = self.dit.load_state_dict(dit_checkpoint, strict=True)
print(f"Load checkpoint from {checkpoint_path}, load result: {load_result}")
def load_vae_checkpoint(self, vae_checkpoint_path, model_key='model'):
checkpoint = torch.load(vae_checkpoint_path, map_location='cpu')
checkpoint = checkpoint[model_key]
loaded_checkpoint = OrderedDict()
for key in checkpoint.keys():
if key.startswith('vae.'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
loaded_checkpoint[new_key] = checkpoint[key]
load_result = self.vae.load_state_dict(loaded_checkpoint)
print(f"Load the VAE from {vae_checkpoint_path}, load result: {load_result}")
@torch.no_grad()
def add_pyramid_noise(
self,
latents_list,
sample_ratios=[1, 1, 1],
):
"""
add the noise for each pyramidal stage
noting that, this method is a general strategy for pyramid-flow, it
can be used for both image and video training.
You can also use this method to train pyramid-flow with full-sequence
diffusion in video generation (without using temporal pyramid and autoregressive modeling)
Params:
latent_list: [low_res, mid_res, high_res] The vae latents of all stages
sample_ratios: The proportion of each stage in the training batch
"""
noise = torch.randn_like(latents_list[-1])
device = noise.device
dtype = latents_list[-1].dtype
t = noise.shape[2]
stages = len(self.stages)
tot_samples = noise.shape[0]
assert tot_samples % (int(sum(sample_ratios))) == 0
assert stages == len(sample_ratios)
height, width = noise.shape[-2], noise.shape[-1]
noise_list = [noise]
cur_noise = noise
for i_s in range(stages-1):
height //= 2;width //= 2
cur_noise = rearrange(cur_noise, 'b c t h w -> (b t) c h w')
cur_noise = F.interpolate(cur_noise, size=(height, width), mode='bilinear') * 2
cur_noise = rearrange(cur_noise, '(b t) c h w -> b c t h w', t=t)
noise_list.append(cur_noise)
noise_list = list(reversed(noise_list)) # make sure from low res to high res
# To calculate the padding batchsize and column size
batch_size = tot_samples // int(sum(sample_ratios))
column_size = int(sum(sample_ratios))
column_to_stage = {}
i_sum = 0
for i_s, column_num in enumerate(sample_ratios):
for index in range(i_sum, i_sum + column_num):
column_to_stage[index] = i_s
i_sum += column_num
noisy_latents_list = []
ratios_list = []
targets_list = []
timesteps_list = []
training_steps = self.scheduler.config.num_train_timesteps
# from low resolution to high resolution
for index in range(column_size):
i_s = column_to_stage[index]
clean_latent = latents_list[i_s][index::column_size] # [bs, c, t, h, w]
last_clean_latent = None if i_s == 0 else latents_list[i_s-1][index::column_size]
start_sigma = self.scheduler.start_sigmas[i_s]
end_sigma = self.scheduler.end_sigmas[i_s]
if i_s == 0:
start_point = noise_list[i_s][index::column_size]
else:
# Get the upsampled latent
last_clean_latent = rearrange(last_clean_latent, 'b c t h w -> (b t) c h w')
last_clean_latent = F.interpolate(last_clean_latent, size=(last_clean_latent.shape[-2] * 2, last_clean_latent.shape[-1] * 2), mode='nearest')
last_clean_latent = rearrange(last_clean_latent, '(b t) c h w -> b c t h w', t=t)
start_point = start_sigma * noise_list[i_s][index::column_size] + (1 - start_sigma) * last_clean_latent
if i_s == stages - 1:
end_point = clean_latent
else:
end_point = end_sigma * noise_list[i_s][index::column_size] + (1 - end_sigma) * clean_latent
# To sample a timestep
u = compute_density_for_timestep_sampling(
weighting_scheme='random',
batch_size=batch_size,
logit_mean=0.0,
logit_std=1.0,
mode_scale=1.29,
)
indices = (u * training_steps).long() # Totally 1000 training steps per stage
indices = indices.clamp(0, training_steps-1)
timesteps = self.scheduler.timesteps_per_stage[i_s][indices].to(device=device)
ratios = self.scheduler.sigmas_per_stage[i_s][indices].to(device=device)
while len(ratios.shape) < start_point.ndim:
ratios = ratios.unsqueeze(-1)
# interpolate the latent
noisy_latents = ratios * start_point + (1 - ratios) * end_point
last_cond_noisy_sigma = torch.rand(size=(batch_size,), device=device) * self.corrupt_ratio
# [stage1_latent, stage2_latent, ..., stagen_latent], which will be concat after patching
noisy_latents_list.append([noisy_latents.to(dtype)])
ratios_list.append(ratios.to(dtype))
timesteps_list.append(timesteps.to(dtype))
targets_list.append(start_point - end_point) # The standard rectified flow matching objective
return noisy_latents_list, ratios_list, timesteps_list, targets_list
def sample_stage_length(self, num_stages, max_units=None):
max_units_in_training = 1 + ((self.max_temporal_length - 1) // self.frame_per_unit)
cur_rank = get_rank()
self.accumulate_steps = self.accumulate_steps + 1
total_turns = max_units_in_training // self.video_sync_group
update_turn = self.accumulate_steps % total_turns
# # uniformly sampling each position
cur_highres_unit = max(int((cur_rank % self.video_sync_group + 1) + update_turn * self.video_sync_group), 1)
cur_mid_res_unit = max(1 + max_units_in_training - cur_highres_unit, 1)
cur_low_res_unit = cur_mid_res_unit
if max_units is not None:
cur_highres_unit = min(cur_highres_unit, max_units)
cur_mid_res_unit = min(cur_mid_res_unit, max_units)
cur_low_res_unit = min(cur_low_res_unit, max_units)
length_list = [cur_low_res_unit, cur_mid_res_unit, cur_highres_unit]
assert len(length_list) == num_stages
return length_list
@torch.no_grad()
def add_pyramid_noise_with_temporal_pyramid(
self,
latents_list,
sample_ratios=[1, 1, 1],
):
"""
add the noise for each pyramidal stage, used for AR video training with temporal pyramid
Params:
latent_list: [low_res, mid_res, high_res] The vae latents of all stages
sample_ratios: The proportion of each stage in the training batch
"""
stages = len(self.stages)
tot_samples = latents_list[0].shape[0]
device = latents_list[0].device
dtype = latents_list[0].dtype
assert tot_samples % (int(sum(sample_ratios))) == 0
assert stages == len(sample_ratios)
noise = torch.randn_like(latents_list[-1])
t = noise.shape[2]
# To allocate the temporal length of each stage, ensuring the sum == constant
max_units = 1 + (t - 1) // self.frame_per_unit
if is_sequence_parallel_initialized():
max_units_per_sample = torch.LongTensor([max_units]).to(device)
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
max_units_per_sample = all_to_all(max_units_per_sample.unsqueeze(1).repeat(1, sp_group_size), sp_group, sp_group_size, scatter_dim=1, gather_dim=0).squeeze(1)
max_units = min(max_units_per_sample.cpu().tolist())
num_units_per_stage = self.sample_stage_length(stages, max_units=max_units) # [The unit number of each stage]
# we needs to sync the length alloc of each sequence parallel group
if is_sequence_parallel_initialized():
num_units_per_stage = torch.LongTensor(num_units_per_stage).to(device)
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(num_units_per_stage, global_src_rank, group=get_sequence_parallel_group())
num_units_per_stage = num_units_per_stage.tolist()
height, width = noise.shape[-2], noise.shape[-1]
noise_list = [noise]
cur_noise = noise
for i_s in range(stages-1):
height //= 2;width //= 2
cur_noise = rearrange(cur_noise, 'b c t h w -> (b t) c h w')
cur_noise = F.interpolate(cur_noise, size=(height, width), mode='bilinear') * 2
cur_noise = rearrange(cur_noise, '(b t) c h w -> b c t h w', t=t)
noise_list.append(cur_noise)
noise_list = list(reversed(noise_list)) # make sure from low res to high res
# To calculate the batchsize and column size
batch_size = tot_samples // int(sum(sample_ratios))
column_size = int(sum(sample_ratios))
column_to_stage = {}
i_sum = 0
for i_s, column_num in enumerate(sample_ratios):
for index in range(i_sum, i_sum + column_num):
column_to_stage[index] = i_s
i_sum += column_num
noisy_latents_list = []
ratios_list = []
targets_list = []
timesteps_list = []
training_steps = self.scheduler.config.num_train_timesteps
# from low resolution to high resolution
for index in range(column_size):
# First prepare the trainable latent construction
i_s = column_to_stage[index]
clean_latent = latents_list[i_s][index::column_size] # [bs, c, t, h, w]
last_clean_latent = None if i_s == 0 else latents_list[i_s-1][index::column_size]
start_sigma = self.scheduler.start_sigmas[i_s]
end_sigma = self.scheduler.end_sigmas[i_s]
if i_s == 0:
start_point = noise_list[i_s][index::column_size]
else:
# Get the upsampled latent
last_clean_latent = rearrange(last_clean_latent, 'b c t h w -> (b t) c h w')
last_clean_latent = F.interpolate(last_clean_latent, size=(last_clean_latent.shape[-2] * 2, last_clean_latent.shape[-1] * 2), mode='nearest')
last_clean_latent = rearrange(last_clean_latent, '(b t) c h w -> b c t h w', t=t)
start_point = start_sigma * noise_list[i_s][index::column_size] + (1 - start_sigma) * last_clean_latent
if i_s == stages - 1:
end_point = clean_latent
else:
end_point = end_sigma * noise_list[i_s][index::column_size] + (1 - end_sigma) * clean_latent
# To sample a timestep
u = compute_density_for_timestep_sampling(
weighting_scheme='random',
batch_size=batch_size,
logit_mean=0.0,
logit_std=1.0,
mode_scale=1.29,
)
indices = (u * training_steps).long() # Totally 1000 training steps per stage
indices = indices.clamp(0, training_steps-1)
timesteps = self.scheduler.timesteps_per_stage[i_s][indices].to(device=device)
ratios = self.scheduler.sigmas_per_stage[i_s][indices].to(device=device)
noise_ratios = ratios * start_sigma + (1 - ratios) * end_sigma
while len(ratios.shape) < start_point.ndim:
ratios = ratios.unsqueeze(-1)
# interpolate the latent
noisy_latents = ratios * start_point + (1 - ratios) * end_point
# The flow matching object
target_latents = start_point - end_point
# pad the noisy previous
num_units = num_units_per_stage[i_s]
num_units = min(num_units, 1 + (t - 1) // self.frame_per_unit)
actual_frames = 1 + (num_units - 1) * self.frame_per_unit
noisy_latents = noisy_latents[:, :, :actual_frames]
target_latents = target_latents[:, :, :actual_frames]
clean_latent = clean_latent[:, :, :actual_frames]
stage_noise = noise_list[i_s][index::column_size][:, :, :actual_frames]
# only the last latent takes part in training
noisy_latents = noisy_latents[:, :, -self.frame_per_unit:]
target_latents = target_latents[:, :, -self.frame_per_unit:]
last_cond_noisy_sigma = torch.rand(size=(batch_size,), device=device) * self.corrupt_ratio
if num_units == 1:
stage_input = [noisy_latents.to(dtype)]
else:
# add the random noise for the last cond clip
last_cond_latent = clean_latent[:, :, -(2*self.frame_per_unit):-self.frame_per_unit]
while len(last_cond_noisy_sigma.shape) < last_cond_latent.ndim:
last_cond_noisy_sigma = last_cond_noisy_sigma.unsqueeze(-1)
# We adding some noise to corrupt the clean condition
last_cond_latent = last_cond_noisy_sigma * torch.randn_like(last_cond_latent) + (1 - last_cond_noisy_sigma) * last_cond_latent
# concat the corrupted condition and the input noisy latents
stage_input = [noisy_latents.to(dtype), last_cond_latent.to(dtype)]
cur_unit_num = 2
cur_stage = i_s
while cur_unit_num < num_units:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_num += 1
cond_latents = latents_list[cur_stage][index::column_size][:, :, :actual_frames]
cond_latents = cond_latents[:, :, -(cur_unit_num * self.frame_per_unit) : -((cur_unit_num - 1) * self.frame_per_unit)]
cond_latents = last_cond_noisy_sigma * torch.randn_like(cond_latents) + (1 - last_cond_noisy_sigma) * cond_latents
stage_input.append(cond_latents.to(dtype))
if cur_stage == 0 and cur_unit_num < num_units:
cond_latents = latents_list[0][index::column_size][:, :, :actual_frames]
cond_latents = cond_latents[:, :, :-(cur_unit_num * self.frame_per_unit)]
cond_latents = last_cond_noisy_sigma * torch.randn_like(cond_latents) + (1 - last_cond_noisy_sigma) * cond_latents
stage_input.append(cond_latents.to(dtype))
stage_input = list(reversed(stage_input))
noisy_latents_list.append(stage_input)
ratios_list.append(ratios.to(dtype))
timesteps_list.append(timesteps.to(dtype))
targets_list.append(target_latents) # The standard rectified flow matching objective
return noisy_latents_list, ratios_list, timesteps_list, targets_list
@torch.no_grad()
def get_pyramid_latent(self, x, stage_num):
# x is the origin vae latent
vae_latent_list = []
vae_latent_list.append(x)
temp, height, width = x.shape[-3], x.shape[-2], x.shape[-1]
for _ in range(stage_num):
height //= 2
width //= 2
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = torch.nn.functional.interpolate(x, size=(height, width), mode='bilinear')
x = rearrange(x, '(b t) c h w -> b c t h w', t=temp)
vae_latent_list.append(x)
vae_latent_list = list(reversed(vae_latent_list))
return vae_latent_list
@torch.no_grad()
def get_vae_latent(self, video, use_temporal_pyramid=True):
if self.load_vae:
assert video.shape[1] == 3, "The vae is loaded, the input should be raw pixels"
video = self.vae.encode(video).latent_dist.sample() # [b c t h w]
if video.shape[2] == 1:
# is image
video = (video - self.vae_shift_factor) * self.vae_scale_factor
else:
# is video
video[:, :, :1] = (video[:, :, :1] - self.vae_shift_factor) * self.vae_scale_factor
video[:, :, 1:] = (video[:, :, 1:] - self.vae_video_shift_factor) * self.vae_video_scale_factor
# Get the pyramidal stages
vae_latent_list = self.get_pyramid_latent(video, len(self.stages) - 1)
if use_temporal_pyramid:
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.add_pyramid_noise_with_temporal_pyramid(vae_latent_list, self.sample_ratios)
else:
# Only use the spatial pyramidal (without temporal ar)
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.add_pyramid_noise(vae_latent_list, self.sample_ratios)
return noisy_latents_list, ratios_list, timesteps_list, targets_list
@torch.no_grad()
def get_text_embeddings(self, text, rand_idx, device):
if self.load_text_encoder:
batch_size = len(text) # Text is a str list
for idx in range(batch_size):
if rand_idx[idx].item():
text[idx] = ''
return self.text_encoder(text, device) # [b s c]
else:
batch_size = len(text['prompt_embeds'])
for idx in range(batch_size):
if rand_idx[idx].item():
text['prompt_embeds'][idx] = self.null_text_embeds['prompt_embed'].to(device)
text['prompt_attention_mask'][idx] = self.null_text_embeds['prompt_attention_mask'].to(device)
text['pooled_prompt_embeds'][idx] = self.null_text_embeds['pooled_prompt_embed'].to(device)
return text['prompt_embeds'], text['prompt_attention_mask'], text['pooled_prompt_embeds']
def calculate_loss(self, model_preds_list, targets_list):
loss_list = []
for model_pred, target in zip(model_preds_list, targets_list):
# Compute the loss.
loss_weight = torch.ones_like(target)
loss = torch.mean(
(loss_weight.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss_list.append(loss)
diffusion_loss = torch.cat(loss_list, dim=0).mean()
if self.return_log:
log = {}
split="train"
log[f'{split}/loss'] = diffusion_loss.detach()
return diffusion_loss, log
else:
return diffusion_loss, {}
def __call__(self, video, text, identifier=['video'], use_temporal_pyramid=True, accelerator: Accelerator=None):
xdim = video.ndim
device = video.device
if 'video' in identifier:
assert 'image' not in identifier
is_image = False
else:
assert 'video' not in identifier
video = video.unsqueeze(2) # 'b c h w -> b c 1 h w'
is_image = True
# TODO: now have 3 stages, firstly get the vae latents
with torch.no_grad(), accelerator.autocast():
# 10% prob drop the text
batch_size = len(video)
rand_idx = torch.rand((batch_size,)) <= self.cfg_rate
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.get_text_embeddings(text, rand_idx, device)
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.get_vae_latent(video, use_temporal_pyramid=use_temporal_pyramid)
timesteps = torch.cat([timestep.unsqueeze(-1) for timestep in timesteps_list], dim=-1)
timesteps = timesteps.reshape(-1)
assert timesteps.shape[0] == prompt_embeds.shape[0]
# DiT forward
model_preds_list = self.dit(
sample=noisy_latents_list,
timestep_ratio=timesteps,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
# calculate the loss
return self.calculate_loss(model_preds_list, targets_list)
def prepare_latents(
self,
batch_size,
num_channels_latents,
temp,
height,
width,
dtype,
device,
generator,
):
shape = (
batch_size,
num_channels_latents,
int(temp),
int(height) // self.downsample,
int(width) // self.downsample,
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def sample_block_noise(self, bs, ch, temp, height, width):
gamma = self.scheduler.config.gamma
dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(4), torch.eye(4) * (1 + gamma) - torch.ones(4, 4) * gamma)
block_number = bs * ch * temp * (height // 2) * (width // 2)
noise = torch.stack([dist.sample() for _ in range(block_number)]) # [block number, 4]
noise = rearrange(noise, '(b c t h w) (p q) -> b c t (h p) (w q)',b=bs,c=ch,t=temp,h=height//2,w=width//2,p=2,q=2)
return noise
@torch.no_grad()
def generate_one_unit(
self,
latents,
past_conditions, # List of past conditions, contains the conditions of each stage
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
temp,
device,
dtype,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
is_first_frame: bool = False,
):
stages = self.stages
intermed_latents = []
for i_s in range(len(stages)):
self.scheduler.set_timesteps(num_inference_steps[i_s], i_s, device=device)
timesteps = self.scheduler.timesteps
if i_s > 0:
height *= 2; width *= 2
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
latents = F.interpolate(latents, size=(height, width), mode='nearest')
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
# Fix the stage
ori_sigma = 1 - self.scheduler.ori_start_sigmas[i_s] # the original coeff of signal
gamma = self.scheduler.config.gamma
alpha = 1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)
beta = alpha * (1 - ori_sigma) / math.sqrt(gamma)
bs, ch, temp, height, width = latents.shape
noise = self.sample_block_noise(bs, ch, temp, height, width)
noise = noise.to(device=device, dtype=dtype)
latents = alpha * latents + beta * noise # To fix the block artifact
for idx, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
if is_sequence_parallel_initialized():
# sync the input latent
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(latent_model_input, global_src_rank, group=get_sequence_parallel_group())
latent_model_input = past_conditions[i_s] + [latent_model_input]
noise_pred = self.dit(
sample=[latent_model_input],
timestep_ratio=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
noise_pred = noise_pred[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if is_first_frame:
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond + self.video_guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
model_output=noise_pred,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
intermed_latents.append(latents)
return intermed_latents
@torch.no_grad()
def generate_i2v(
self,
prompt: Union[str, List[str]] = '',
input_image: PIL.Image = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 4.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
cpu_offloading: bool = False, # If true, reload device will be cuda.
inference_multigpu: bool = False,
callback: Optional[Callable[[int, int, Dict], None]] = None,
):
if self.sequential_offload_enabled and not cpu_offloading:
print("Warning: overriding cpu_offloading set to false, as it's needed for sequential cpu offload")
cpu_offloading=True
device = self.device if not cpu_offloading else torch.device("cuda")
dtype = self.dtype
if cpu_offloading:
# skip caring about the text encoder here as its about to be used anyways.
if not self.sequential_offload_enabled:
if str(self.dit.device) != "cpu":
print("(dit) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.dit.to("cpu")
torch.cuda.empty_cache()
if str(self.vae.device) != "cpu":
print("(vae) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.vae.to("cpu")
torch.cuda.empty_cache()
width = input_image.width
height = input_image.height
assert temp % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
if cpu_offloading and not self.sequential_offload_enabled:
self.text_encoder.to("cuda")
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if cpu_offloading:
if not self.sequential_offload_enabled:
self.text_encoder.to("cpu")
self.vae.to("cuda")
torch.cuda.empty_cache()
if use_linear_guidance:
max_guidance_scale = guidance_scale
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp+1)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
if is_sequence_parallel_initialized():
# sync the prompt embedding across multiple GPUs
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(pooled_prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(prompt_attention_mask, global_src_rank, group=get_sequence_parallel_group())
# Create the initial random noise
num_channels_latents = (self.dit.config.in_channels // 4) if self.model_name == "pyramid_flux" else self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by defalut, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = temp // self.frame_per_unit
stages = self.stages
# encode the image latents
image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])
input_image_tensor = image_transform(input_image).unsqueeze(0).unsqueeze(2) # [b c 1 h w]
input_image_latent = (self.vae.encode(input_image_tensor.to(self.vae.device, dtype=self.vae.dtype)).latent_dist.sample() - self.vae_shift_factor) * self.vae_scale_factor # [b c 1 h w]
if is_sequence_parallel_initialized():
# sync the image latent across multiple GPUs
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(input_image_latent, global_src_rank, group=get_sequence_parallel_group())
generated_latents_list = [input_image_latent] # The generated results
last_generated_latents = input_image_latent
if cpu_offloading:
self.vae.to("cpu")
if not self.sequential_offload_enabled:
self.dit.to("cuda")
torch.cuda.empty_cache()
for unit_index in tqdm(range(1, num_units)):
gc.collect()
torch.cuda.empty_cache()
if callback:
callback(unit_index, num_units)
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-self.frame_per_unit:]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:,(unit_index - 1) * self.frame_per_unit:unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
if cpu_offloading:
if not self.sequential_offload_enabled:
self.dit.to("cpu")
self.vae.to("cuda")
torch.cuda.empty_cache()
image = self.decode_latent(generated_latents, save_memory=save_memory, inference_multigpu=inference_multigpu)
if cpu_offloading:
self.vae.to("cpu")
torch.cuda.empty_cache()
# not technically necessary, but returns the pipeline to its original state
return image
@torch.no_grad()
def generate(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
video_num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 7.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
cpu_offloading: bool = False, # If true, reload device will be cuda.
inference_multigpu: bool = False,
callback: Optional[Callable[[int, int, Dict], None]] = None,
):
if self.sequential_offload_enabled and not cpu_offloading:
print("Warning: overriding cpu_offloading set to false, as it's needed for sequential cpu offload")
cpu_offloading=True
device = self.device if not cpu_offloading else torch.device("cuda")
dtype = self.dtype
if cpu_offloading:
# skip caring about the text encoder here as its about to be used anyways.
if not self.sequential_offload_enabled:
if str(self.dit.device) != "cpu":
print("(dit) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.dit.to("cpu")
torch.cuda.empty_cache()
if str(self.vae.device) != "cpu":
print("(vae) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.vae.to("cpu")
torch.cuda.empty_cache()
assert (temp - 1) % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
if isinstance(video_num_inference_steps, int):
video_num_inference_steps = [video_num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
if cpu_offloading and not self.sequential_offload_enabled:
self.text_encoder.to("cuda")
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if cpu_offloading:
if not self.sequential_offload_enabled:
self.text_encoder.to("cpu")
self.dit.to("cuda")
torch.cuda.empty_cache()
if use_linear_guidance:
max_guidance_scale = guidance_scale
# guidance_scale_list = torch.linspace(max_guidance_scale, min_guidance_scale, temp).tolist()
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
if is_sequence_parallel_initialized():
# sync the prompt embedding across multiple GPUs
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(pooled_prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(prompt_attention_mask, global_src_rank, group=get_sequence_parallel_group())
# Create the initial random noise
num_channels_latents = (self.dit.config.in_channels // 4) if self.model_name == "pyramid_flux" else self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by default, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = 1 + (temp - 1) // self.frame_per_unit
stages = self.stages
generated_latents_list = [] # The generated results
last_generated_latents = None
for unit_index in tqdm(range(num_units)):
gc.collect()
torch.cuda.empty_cache()
if callback:
callback(unit_index, num_units)
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
if unit_index == 0:
past_condition_latents = [[] for _ in range(len(stages))]
intermed_latents = self.generate_one_unit(
latents[:,:,:1],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
1,
device,
dtype,
generator,
is_first_frame=True,
)
else:
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-(self.frame_per_unit):]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:, 1 + (unit_index - 1) * self.frame_per_unit:1 + unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
video_num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
if cpu_offloading:
if not self.sequential_offload_enabled:
self.dit.to("cpu")
self.vae.to("cuda")
torch.cuda.empty_cache()
image = self.decode_latent(generated_latents, save_memory=save_memory, inference_multigpu=inference_multigpu)
if cpu_offloading:
self.vae.to("cpu")
torch.cuda.empty_cache()
# not technically necessary, but returns the pipeline to its original state
return image
def decode_latent(self, latents, save_memory=True, inference_multigpu=False):
# only the main process needs vae decoding
if inference_multigpu and get_rank() != 0:
return None
if latents.shape[2] == 1:
latents = (latents / self.vae_scale_factor) + self.vae_shift_factor
else:
latents[:, :, :1] = (latents[:, :, :1] / self.vae_scale_factor) + self.vae_shift_factor
latents[:, :, 1:] = (latents[:, :, 1:] / self.vae_video_scale_factor) + self.vae_video_shift_factor
if save_memory:
# reducing the tile size and temporal chunk window size
image = self.vae.decode(latents, temporal_chunk=True, window_size=1, tile_sample_min_size=256).sample
else:
image = self.vae.decode(latents, temporal_chunk=True, window_size=2, tile_sample_min_size=512).sample
image = image.mul(127.5).add(127.5).clamp(0, 255).byte()
image = rearrange(image, "B C T H W -> (B T) H W C")
image = image.cpu().numpy()
image = self.numpy_to_pil(image)
return image
@staticmethod
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
@property
def device(self):
return next(self.dit.parameters()).device
@property
def dtype(self):
return next(self.dit.parameters()).dtype
@property
def guidance_scale(self):
return self._guidance_scale
@property
def video_guidance_scale(self):
return self._video_guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 0