Pyramid-Flow / train /train_video_vae.py
sironagasuyagi's picture
Upload folder using huggingface_hub
910e2ad verified
import sys
import os
sys.path.append(os.path.abspath('.'))
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import random
from pathlib import Path
from collections import OrderedDict
from dataset import (
ImageDataset,
VideoDataset,
create_mixed_dataloaders,
)
from trainer_misc import (
NativeScalerWithGradNormCount,
create_optimizer,
train_one_epoch,
auto_load_model,
save_model,
init_distributed_mode,
cosine_scheduler,
)
from video_vae import CausalVideoVAELossWrapper
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import utils
def get_args():
parser = argparse.ArgumentParser('Pytorch Multi-process Training script for Video VAE', add_help=False)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--print_freq', default=20, type=int)
parser.add_argument('--iters_per_epoch', default=2000, type=int)
parser.add_argument('--save_ckpt_freq', default=20, type=int)
# Model parameters
parser.add_argument('--ema_update', action='store_true')
parser.add_argument('--ema_decay', default=0.99, type=float, metavar='MODEL', help='ema decay for quantizer')
parser.add_argument('--model_path', default='', type=str, help='The vae weight path')
parser.add_argument('--model_dtype', default='bf16', help="The Model Dtype: bf16 or df16")
# Using the context parallel to distribute multiple video clips to different devices
parser.add_argument('--use_context_parallel', action='store_true')
parser.add_argument('--context_size', default=2, type=int, help="The context length size")
parser.add_argument('--resolution', default=256, type=int, help="The input resolution for VAE training")
parser.add_argument('--max_frames', default=24, type=int, help='number of max video frames')
parser.add_argument('--use_image_video_mixed_training', action='store_true', help="Whether to use the mixed image and video training")
# The loss weights
parser.add_argument('--lpips_ckpt', default="/home/jinyang06/models/vae/video_vae_baseline/vgg_lpips.pth", type=str, help="The LPIPS checkpoint path")
parser.add_argument('--disc_start', default=0, type=int, help="The start iteration for adding GAN Loss")
parser.add_argument('--logvar_init', default=0.0, type=float, help="The log var init" )
parser.add_argument('--kl_weight', default=1e-6, type=float, help="The KL loss weight")
parser.add_argument('--pixelloss_weight', default=1.0, type=float, help="The pixel reconstruction loss weight")
parser.add_argument('--perceptual_weight', default=1.0, type=float, help="The perception loss weight")
parser.add_argument('--disc_weight', default=0.1, type=float, help="The GAN loss weight")
parser.add_argument('--pretrained_vae_weight', default='', type=str, help='The pretrained vae ckpt path')
parser.add_argument('--not_add_normalize', action='store_true')
parser.add_argument('--add_discriminator', action='store_true')
parser.add_argument('--freeze_encoder', action='store_true')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD.
(Set the same value with args.weight_decay to keep weight decay no change)""")
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR',
help='learning rate (default: 5e-5)')
parser.add_argument('--lr_disc', type=float, default=1e-5, metavar='LR',
help='learning rate (default: 1e-5) of the discriminator')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='epochs to warmup LR, if scheduler supports')
# Dataset parameters
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--image_anno', default='', type=str, help="The image data annotation file path")
parser.add_argument('--video_anno', default='', type=str, help="The video data annotation file path")
parser.add_argument('--image_mix_ratio', default=0.1, type=float, help="The image data proportion in the training batch")
# Distributed Training parameters
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--dist_eval', action='store_true', default=True,
help='Enabling distributed evaluation')
parser.add_argument('--disable_eval', action='store_true', default=False)
parser.add_argument('--eval', action='store_true', default=False, help="Perform evaluation only")
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--global_step', default=0, type=int, metavar='N', help='The global optimization step')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser.parse_args()
def build_model(args):
model_dtype = args.model_dtype
model_path = args.model_path
print(f"Load the base VideoVAE checkpoint from path: {model_path}, using dtype {model_dtype}")
model = CausalVideoVAELossWrapper(
model_path,
model_dtype='fp32', # For training, we used mixed training
disc_start=args.disc_start,
logvar_init=args.logvar_init,
kl_weight=args.kl_weight,
pixelloss_weight=args.pixelloss_weight,
perceptual_weight=args.perceptual_weight,
disc_weight=args.disc_weight,
interpolate=False,
add_discriminator=args.add_discriminator,
freeze_encoder=args.freeze_encoder,
load_loss_module=True,
lpips_ckpt=args.lpips_ckpt,
)
if args.pretrained_vae_weight:
pretrained_vae_weight = args.pretrained_vae_weight
print(f"Loading the vae checkpoint from {pretrained_vae_weight}")
model.load_checkpoint(pretrained_vae_weight)
return model
def main(args):
init_distributed_mode(args)
# If enabled, distribute multiple video clips to different devices
if args.use_context_parallel:
utils.initialize_context_parallel(args.context_size)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
model = build_model(args)
world_size = utils.get_world_size()
global_rank = utils.get_rank()
num_training_steps_per_epoch = args.iters_per_epoch
log_writer = None
# building dataset and dataloaders
image_gpus = max(1, int(world_size * args.image_mix_ratio))
if args.use_image_video_mixed_training:
video_gpus = world_size - image_gpus
else:
# only use video data
video_gpus = world_size
image_gpus = 0
if global_rank < video_gpus:
training_dataset = VideoDataset(args.video_anno, resolution=args.resolution,
max_frames=args.max_frames, add_normalize=not args.not_add_normalize)
else:
training_dataset = ImageDataset(args.image_anno, resolution=args.resolution,
max_frames=args.max_frames // 4, add_normalize=not args.not_add_normalize)
data_loader_train = create_mixed_dataloaders(
training_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
epoch=args.seed,
world_size=world_size,
rank=global_rank,
image_mix_ratio=args.image_mix_ratio,
)
torch.distributed.barrier()
model.to(device)
model_without_ddp = model
n_learnable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_fix_parameters = sum(p.numel() for p in model.parameters() if not p.requires_grad)
for name, p in model.named_parameters():
if not p.requires_grad:
print(name)
print(f'total number of learnable params: {n_learnable_parameters / 1e6} M')
print(f'total number of fixed params in : {n_fix_parameters / 1e6} M')
total_batch_size = args.batch_size * utils.get_world_size()
print("LR = %.8f" % args.lr)
print("Min LR = %.8f" % args.min_lr)
print("Weigth Decay = %.8f" % args.weight_decay)
print("Batch size = %d" % total_batch_size)
print("Number of training steps = %d" % (num_training_steps_per_epoch * args.epochs))
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
optimizer = create_optimizer(args, model_without_ddp.vae)
optimizer_disc = create_optimizer(args, model_without_ddp.loss.discriminator) if args.add_discriminator else None
loss_scaler = NativeScalerWithGradNormCount(enabled=True if args.model_dtype == "fp16" else False)
loss_scaler_disc = NativeScalerWithGradNormCount(enabled=True if args.model_dtype == "fp16" else False) if args.add_discriminator else None
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
print("Use step level LR & WD scheduler!")
lr_schedule_values = cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
lr_schedule_values_disc = cosine_scheduler(
args.lr_disc, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
) if args.add_discriminator else None
auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, optimizer_disc=optimizer_disc,
)
print(f"Start training for {args.epochs} epochs, the global iterations is {args.global_step}")
start_time = time.time()
torch.distributed.barrier()
for epoch in range(args.start_epoch, args.epochs):
train_stats = train_one_epoch(
model,
args.model_dtype,
data_loader_train,
optimizer,
optimizer_disc,
device,
epoch,
loss_scaler,
loss_scaler_disc,
args.clip_grad,
log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
lr_schedule_values_disc=lr_schedule_values_disc,
args=args,
print_freq=args.print_freq,
iters_per_epoch=num_training_steps_per_epoch,
)
if args.output_dir:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, save_ckpt_freq=args.save_ckpt_freq, optimizer_disc=optimizer_disc
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, 'n_parameters': n_learnable_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)