Spaces:
Build error
Build error
import sys | |
import os | |
sys.path.append(os.path.abspath('.')) | |
import argparse | |
import datetime | |
import numpy as np | |
import time | |
import torch | |
import torch.backends.cudnn as cudnn | |
import json | |
import random | |
from pathlib import Path | |
from collections import OrderedDict | |
from dataset import ( | |
ImageDataset, | |
VideoDataset, | |
create_mixed_dataloaders, | |
) | |
from trainer_misc import ( | |
NativeScalerWithGradNormCount, | |
create_optimizer, | |
train_one_epoch, | |
auto_load_model, | |
save_model, | |
init_distributed_mode, | |
cosine_scheduler, | |
) | |
from video_vae import CausalVideoVAELossWrapper | |
from PIL import Image | |
from PIL import ImageFile | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
import utils | |
def get_args(): | |
parser = argparse.ArgumentParser('Pytorch Multi-process Training script for Video VAE', add_help=False) | |
parser.add_argument('--batch_size', default=64, type=int) | |
parser.add_argument('--epochs', default=100, type=int) | |
parser.add_argument('--print_freq', default=20, type=int) | |
parser.add_argument('--iters_per_epoch', default=2000, type=int) | |
parser.add_argument('--save_ckpt_freq', default=20, type=int) | |
# Model parameters | |
parser.add_argument('--ema_update', action='store_true') | |
parser.add_argument('--ema_decay', default=0.99, type=float, metavar='MODEL', help='ema decay for quantizer') | |
parser.add_argument('--model_path', default='', type=str, help='The vae weight path') | |
parser.add_argument('--model_dtype', default='bf16', help="The Model Dtype: bf16 or df16") | |
# Using the context parallel to distribute multiple video clips to different devices | |
parser.add_argument('--use_context_parallel', action='store_true') | |
parser.add_argument('--context_size', default=2, type=int, help="The context length size") | |
parser.add_argument('--resolution', default=256, type=int, help="The input resolution for VAE training") | |
parser.add_argument('--max_frames', default=24, type=int, help='number of max video frames') | |
parser.add_argument('--use_image_video_mixed_training', action='store_true', help="Whether to use the mixed image and video training") | |
# The loss weights | |
parser.add_argument('--lpips_ckpt', default="/home/jinyang06/models/vae/video_vae_baseline/vgg_lpips.pth", type=str, help="The LPIPS checkpoint path") | |
parser.add_argument('--disc_start', default=0, type=int, help="The start iteration for adding GAN Loss") | |
parser.add_argument('--logvar_init', default=0.0, type=float, help="The log var init" ) | |
parser.add_argument('--kl_weight', default=1e-6, type=float, help="The KL loss weight") | |
parser.add_argument('--pixelloss_weight', default=1.0, type=float, help="The pixel reconstruction loss weight") | |
parser.add_argument('--perceptual_weight', default=1.0, type=float, help="The perception loss weight") | |
parser.add_argument('--disc_weight', default=0.1, type=float, help="The GAN loss weight") | |
parser.add_argument('--pretrained_vae_weight', default='', type=str, help='The pretrained vae ckpt path') | |
parser.add_argument('--not_add_normalize', action='store_true') | |
parser.add_argument('--add_discriminator', action='store_true') | |
parser.add_argument('--freeze_encoder', action='store_true') | |
# Optimizer parameters | |
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', | |
help='Optimizer (default: "adamw"') | |
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', | |
help='Optimizer Epsilon (default: 1e-8)') | |
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', | |
help='Optimizer Betas (default: None, use opt default)') | |
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', | |
help='Clip gradient norm (default: None, no clipping)') | |
parser.add_argument('--weight_decay', type=float, default=1e-4, | |
help='weight decay (default: 1e-4)') | |
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the | |
weight decay. We use a cosine schedule for WD. | |
(Set the same value with args.weight_decay to keep weight decay no change)""") | |
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR', | |
help='learning rate (default: 5e-5)') | |
parser.add_argument('--lr_disc', type=float, default=1e-5, metavar='LR', | |
help='learning rate (default: 1e-5) of the discriminator') | |
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', | |
help='warmup learning rate (default: 1e-6)') | |
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR', | |
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') | |
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', | |
help='epochs to warmup LR, if scheduler supports') | |
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', | |
help='epochs to warmup LR, if scheduler supports') | |
# Dataset parameters | |
parser.add_argument('--output_dir', default='', | |
help='path where to save, empty for no saving') | |
parser.add_argument('--image_anno', default='', type=str, help="The image data annotation file path") | |
parser.add_argument('--video_anno', default='', type=str, help="The video data annotation file path") | |
parser.add_argument('--image_mix_ratio', default=0.1, type=float, help="The image data proportion in the training batch") | |
# Distributed Training parameters | |
parser.add_argument('--device', default='cuda', | |
help='device to use for training / testing') | |
parser.add_argument('--seed', default=0, type=int) | |
parser.add_argument('--resume', default='', help='resume from checkpoint') | |
parser.add_argument('--auto_resume', action='store_true') | |
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') | |
parser.set_defaults(auto_resume=True) | |
parser.add_argument('--dist_eval', action='store_true', default=True, | |
help='Enabling distributed evaluation') | |
parser.add_argument('--disable_eval', action='store_true', default=False) | |
parser.add_argument('--eval', action='store_true', default=False, help="Perform evaluation only") | |
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', | |
help='start epoch') | |
parser.add_argument('--global_step', default=0, type=int, metavar='N', help='The global optimization step') | |
parser.add_argument('--num_workers', default=10, type=int) | |
parser.add_argument('--pin_mem', action='store_true', | |
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') | |
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', | |
help='') | |
parser.set_defaults(pin_mem=True) | |
# distributed training parameters | |
parser.add_argument('--world_size', default=1, type=int, | |
help='number of distributed processes') | |
parser.add_argument('--local_rank', default=-1, type=int) | |
parser.add_argument('--dist_on_itp', action='store_true') | |
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') | |
return parser.parse_args() | |
def build_model(args): | |
model_dtype = args.model_dtype | |
model_path = args.model_path | |
print(f"Load the base VideoVAE checkpoint from path: {model_path}, using dtype {model_dtype}") | |
model = CausalVideoVAELossWrapper( | |
model_path, | |
model_dtype='fp32', # For training, we used mixed training | |
disc_start=args.disc_start, | |
logvar_init=args.logvar_init, | |
kl_weight=args.kl_weight, | |
pixelloss_weight=args.pixelloss_weight, | |
perceptual_weight=args.perceptual_weight, | |
disc_weight=args.disc_weight, | |
interpolate=False, | |
add_discriminator=args.add_discriminator, | |
freeze_encoder=args.freeze_encoder, | |
load_loss_module=True, | |
lpips_ckpt=args.lpips_ckpt, | |
) | |
if args.pretrained_vae_weight: | |
pretrained_vae_weight = args.pretrained_vae_weight | |
print(f"Loading the vae checkpoint from {pretrained_vae_weight}") | |
model.load_checkpoint(pretrained_vae_weight) | |
return model | |
def main(args): | |
init_distributed_mode(args) | |
# If enabled, distribute multiple video clips to different devices | |
if args.use_context_parallel: | |
utils.initialize_context_parallel(args.context_size) | |
print(args) | |
device = torch.device(args.device) | |
# fix the seed for reproducibility | |
seed = args.seed + utils.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
cudnn.benchmark = True | |
model = build_model(args) | |
world_size = utils.get_world_size() | |
global_rank = utils.get_rank() | |
num_training_steps_per_epoch = args.iters_per_epoch | |
log_writer = None | |
# building dataset and dataloaders | |
image_gpus = max(1, int(world_size * args.image_mix_ratio)) | |
if args.use_image_video_mixed_training: | |
video_gpus = world_size - image_gpus | |
else: | |
# only use video data | |
video_gpus = world_size | |
image_gpus = 0 | |
if global_rank < video_gpus: | |
training_dataset = VideoDataset(args.video_anno, resolution=args.resolution, | |
max_frames=args.max_frames, add_normalize=not args.not_add_normalize) | |
else: | |
training_dataset = ImageDataset(args.image_anno, resolution=args.resolution, | |
max_frames=args.max_frames // 4, add_normalize=not args.not_add_normalize) | |
data_loader_train = create_mixed_dataloaders( | |
training_dataset, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
epoch=args.seed, | |
world_size=world_size, | |
rank=global_rank, | |
image_mix_ratio=args.image_mix_ratio, | |
) | |
torch.distributed.barrier() | |
model.to(device) | |
model_without_ddp = model | |
n_learnable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
n_fix_parameters = sum(p.numel() for p in model.parameters() if not p.requires_grad) | |
for name, p in model.named_parameters(): | |
if not p.requires_grad: | |
print(name) | |
print(f'total number of learnable params: {n_learnable_parameters / 1e6} M') | |
print(f'total number of fixed params in : {n_fix_parameters / 1e6} M') | |
total_batch_size = args.batch_size * utils.get_world_size() | |
print("LR = %.8f" % args.lr) | |
print("Min LR = %.8f" % args.min_lr) | |
print("Weigth Decay = %.8f" % args.weight_decay) | |
print("Batch size = %d" % total_batch_size) | |
print("Number of training steps = %d" % (num_training_steps_per_epoch * args.epochs)) | |
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch)) | |
optimizer = create_optimizer(args, model_without_ddp.vae) | |
optimizer_disc = create_optimizer(args, model_without_ddp.loss.discriminator) if args.add_discriminator else None | |
loss_scaler = NativeScalerWithGradNormCount(enabled=True if args.model_dtype == "fp16" else False) | |
loss_scaler_disc = NativeScalerWithGradNormCount(enabled=True if args.model_dtype == "fp16" else False) if args.add_discriminator else None | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False) | |
model_without_ddp = model.module | |
print("Use step level LR & WD scheduler!") | |
lr_schedule_values = cosine_scheduler( | |
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, | |
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, | |
) | |
lr_schedule_values_disc = cosine_scheduler( | |
args.lr_disc, args.min_lr, args.epochs, num_training_steps_per_epoch, | |
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, | |
) if args.add_discriminator else None | |
auto_load_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, optimizer_disc=optimizer_disc, | |
) | |
print(f"Start training for {args.epochs} epochs, the global iterations is {args.global_step}") | |
start_time = time.time() | |
torch.distributed.barrier() | |
for epoch in range(args.start_epoch, args.epochs): | |
train_stats = train_one_epoch( | |
model, | |
args.model_dtype, | |
data_loader_train, | |
optimizer, | |
optimizer_disc, | |
device, | |
epoch, | |
loss_scaler, | |
loss_scaler_disc, | |
args.clip_grad, | |
log_writer=log_writer, | |
start_steps=epoch * num_training_steps_per_epoch, | |
lr_schedule_values=lr_schedule_values, | |
lr_schedule_values_disc=lr_schedule_values_disc, | |
args=args, | |
print_freq=args.print_freq, | |
iters_per_epoch=num_training_steps_per_epoch, | |
) | |
if args.output_dir: | |
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: | |
save_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, epoch=epoch, save_ckpt_freq=args.save_ckpt_freq, optimizer_disc=optimizer_disc | |
) | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch, 'n_parameters': n_learnable_parameters} | |
if args.output_dir and utils.is_main_process(): | |
if log_writer is not None: | |
log_writer.flush() | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
if __name__ == '__main__': | |
opts = get_args() | |
if opts.output_dir: | |
Path(opts.output_dir).mkdir(parents=True, exist_ok=True) | |
main(opts) | |