import os import sys import torch import argparse from PIL import Image from diffusers.utils import export_to_video # Add the project root directory to sys.path SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) PROJECT_ROOT = os.path.dirname(SCRIPT_DIR) if PROJECT_ROOT not in sys.path: sys.path.insert(0, PROJECT_ROOT) from pyramid_dit import PyramidDiTForVideoGeneration from trainer_misc import init_distributed_mode, init_sequence_parallel_group def get_args(): parser = argparse.ArgumentParser('Pytorch Multi-process Script', add_help=False) parser.add_argument('--model_name', default='pyramid_mmdit', type=str, help="The model name", choices=["pyramid_flux", "pyramid_mmdit"]) parser.add_argument('--model_dtype', default='bf16', type=str, help="The Model Dtype: bf16") parser.add_argument('--model_path', required=True, type=str, help='Path to the downloaded checkpoint directory') parser.add_argument('--variant', default='diffusion_transformer_768p', type=str) parser.add_argument('--task', default='t2v', type=str, choices=['i2v', 't2v']) parser.add_argument('--temp', default=16, type=int, help='The generated latent num, num_frames = temp * 8 + 1') parser.add_argument('--sp_group_size', default=2, type=int, help="The number of GPUs used for inference, should be 2 or 4") parser.add_argument('--sp_proc_num', default=-1, type=int, help="The number of processes used for video training, default=-1 means using all processes.") parser.add_argument('--prompt', type=str, required=True, help="Text prompt for video generation") parser.add_argument('--image_path', type=str, help="Path to the input image for image-to-video") parser.add_argument('--video_guidance_scale', type=float, default=5.0, help="Video guidance scale") parser.add_argument('--guidance_scale', type=float, default=9.0, help="Guidance scale for text-to-video") parser.add_argument('--resolution', type=str, default='768p', choices=['768p', '384p'], help="Model resolution") parser.add_argument('--output_path', type=str, required=True, help="Path to save the generated video") return parser.parse_args() def main(): args = get_args() # Setup DDP init_distributed_mode(args) assert args.world_size == args.sp_group_size, "The sequence parallel size should match DDP world size" # Enable sequence parallel init_sequence_parallel_group(args) device = torch.device('cuda') rank = args.rank model_dtype = args.model_dtype if args.model_name == "pyramid_flux": assert args.variant != "diffusion_transformer_768p", "The pyramid_flux does not support high resolution now, \ we will release it after finishing training. You can modify the model_name to pyramid_mmdit to support 768p version generation" model = PyramidDiTForVideoGeneration( args.model_path, model_dtype, model_name=args.model_name, model_variant=args.variant, ) model.vae.to(device) model.dit.to(device) model.text_encoder.to(device) model.vae.enable_tiling() if model_dtype == "bf16": torch_dtype = torch.bfloat16 elif model_dtype == "fp16": torch_dtype = torch.float16 else: torch_dtype = torch.float32 # The video generation config if args.resolution == '768p': width = 1280 height = 768 else: width = 640 height = 384 try: if args.task == 't2v': prompt = args.prompt with torch.no_grad(), torch.cuda.amp.autocast(enabled=(model_dtype != 'fp32'), dtype=torch_dtype): frames = model.generate( prompt=prompt, num_inference_steps=[20, 20, 20], video_num_inference_steps=[10, 10, 10], height=height, width=width, temp=args.temp, guidance_scale=args.guidance_scale, video_guidance_scale=args.video_guidance_scale, output_type="pil", save_memory=True, cpu_offloading=False, inference_multigpu=True, ) if rank == 0: export_to_video(frames, args.output_path, fps=24) elif args.task == 'i2v': if not args.image_path: raise ValueError("Image path is required for image-to-video task") image = Image.open(args.image_path).convert("RGB") image = image.resize((width, height)) prompt = args.prompt with torch.no_grad(), torch.cuda.amp.autocast(enabled=(model_dtype != 'fp32'), dtype=torch_dtype): frames = model.generate_i2v( prompt=prompt, input_image=image, num_inference_steps=[10, 10, 10], temp=args.temp, video_guidance_scale=args.video_guidance_scale, output_type="pil", save_memory=True, cpu_offloading=False, inference_multigpu=True, ) if rank == 0: export_to_video(frames, args.output_path, fps=24) except Exception as e: if rank == 0: print(f"[ERROR] Error during video generation: {e}") raise finally: torch.distributed.barrier() if __name__ == "__main__": main()