{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import json\n", "import torch\n", "import numpy as np\n", "import PIL\n", "from PIL import Image\n", "from IPython.display import HTML\n", "from pyramid_dit import PyramidDiTForVideoGeneration\n", "from IPython.display import Image as ipython_image\n", "from diffusers.utils import load_image, export_to_video, export_to_gif" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "variant='diffusion_transformer_image' # For low resolution\n", "model_name = \"pyramid_flux\"\n", "\n", "model_path = \"/home/jinyang06/models/pyramid-flow-miniflux\" # The downloaded checkpoint dir\n", "model_dtype = 'bf16'\n", "\n", "device_id = 0\n", "torch.cuda.set_device(device_id)\n", "\n", "model = PyramidDiTForVideoGeneration(\n", " model_path,\n", " model_dtype,\n", " model_name=model_name,\n", " model_variant=variant,\n", ")\n", "\n", "model.vae.to(\"cuda\")\n", "model.dit.to(\"cuda\")\n", "model.text_encoder.to(\"cuda\")\n", "\n", "model.vae.enable_tiling()\n", "\n", "if model_dtype == \"bf16\":\n", " torch_dtype = torch.bfloat16 \n", "elif model_dtype == \"fp16\":\n", " torch_dtype = torch.float16\n", "else:\n", " torch_dtype = torch.float32" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Text-to-Image" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "prompt = \"shoulder and full head portrait of a beautiful 19 year old girl, brunette, smiling, stunning, highly detailed, glamour lighting, HDR, photorealistic, hyperrealism, octane render, unreal engine\"\n", "\n", "# now support 3 aspect ratios\n", "resolution_dict = {\n", " '1:1' : (1024, 1024),\n", " '5:3' : (1280, 768),\n", " '3:5' : (768, 1280),\n", "}\n", "\n", "ratio = '1:1' # 1:1, 5:3, 3:5\n", "\n", "width, height = resolution_dict[ratio]\n", "\n", "\n", "with torch.no_grad(), torch.cuda.amp.autocast(enabled=True if model_dtype != 'fp32' else False, dtype=torch_dtype):\n", " images = model.generate(\n", " prompt=prompt,\n", " num_inference_steps=[20, 20, 20],\n", " height=height,\n", " width=width,\n", " temp=1,\n", " guidance_scale=9.0, \n", " output_type=\"pil\",\n", " save_memory=False, \n", " )\n", "\n", "display(images[0])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }