from typing import Any, Dict, List, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F import inspect from einops import rearrange from diffusers.utils import deprecate from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, SwiGLU from .modeling_normalization import ( AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, FP32LayerNorm, RMSNorm ) from trainer_misc import ( is_sequence_parallel_initialized, get_sequence_parallel_group, get_sequence_parallel_world_size, all_to_all, ) try: from flash_attn import flash_attn_qkvpacked_func, flash_attn_func from flash_attn.bert_padding import pad_input, unpad_input, index_first_axis from flash_attn.flash_attn_interface import flash_attn_varlen_func except: flash_attn_func = None flash_attn_qkvpacked_func = None flash_attn_varlen_func = None def apply_rope(xq, xk, freqs_cis): xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) elif activation_fn == "swiglu": act_fn = SwiGLU(dim, inner_dim, bias=bias) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for module in self.net: hidden_states = module(hidden_states) return hidden_states class SequenceParallelVarlenFlashSelfAttentionWithT5Mask: def __init__(self): pass def __call__( self, query, key, value, encoder_query, encoder_key, encoder_value, heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None, ): assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set" batch_size = query.shape[0] qkv_list = [] num_stages = len(hidden_length) encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim] qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] # To sync the encoder query, key and values sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() encoder_qkv = all_to_all(encoder_qkv, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] output_hidden = torch.zeros_like(qkv[:,:,0]) output_encoder_hidden = torch.zeros_like(encoder_qkv[:,:,0]) encoder_length = encoder_qkv.shape[1] i_sum = 0 for i_p, length in enumerate(hidden_length): # get the query, key, value from padding sequence encoder_qkv_tokens = encoder_qkv[i_p::num_stages] qkv_tokens = qkv[:, i_sum:i_sum+length] qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, pad_seq, 3, nhead, dim] if image_rotary_emb is not None: concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p]) indices = encoder_attention_mask[i_p]['indices'] qkv_list.append(index_first_axis(rearrange(concat_qkv_tokens, "b s ... -> (b s) ..."), indices)) i_sum += length token_lengths = [x_.shape[0] for x_ in qkv_list] qkv = torch.cat(qkv_list, dim=0) query, key, value = qkv.unbind(1) cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0) max_seqlen_q = cu_seqlens.max().item() max_seqlen_k = max_seqlen_q cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0)) cu_seqlens_k = cu_seqlens_q.clone() output = flash_attn_varlen_func( query, key, value, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=0.0, causal=False, softmax_scale=scale, ) # To merge the tokens i_sum = 0;token_sum = 0 for i_p, length in enumerate(hidden_length): tot_token_num = token_lengths[i_p] stage_output = output[token_sum : token_sum + tot_token_num] stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, encoder_length + length * sp_group_size) stage_encoder_hidden_output = stage_output[:, :encoder_length] stage_hidden_output = stage_output[:, encoder_length:] stage_hidden_output = all_to_all(stage_hidden_output, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) output_hidden[:, i_sum:i_sum+length] = stage_hidden_output output_encoder_hidden[i_p::num_stages] = stage_encoder_hidden_output token_sum += tot_token_num i_sum += length output_encoder_hidden = all_to_all(output_encoder_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) output_hidden = output_hidden.flatten(2, 3) output_encoder_hidden = output_encoder_hidden.flatten(2, 3) return output_hidden, output_encoder_hidden class VarlenFlashSelfAttentionWithT5Mask: def __init__(self): pass def __call__( self, query, key, value, encoder_query, encoder_key, encoder_value, heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None, ): assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set" batch_size = query.shape[0] output_hidden = torch.zeros_like(query) output_encoder_hidden = torch.zeros_like(encoder_query) encoder_length = encoder_query.shape[1] qkv_list = [] num_stages = len(hidden_length) encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim] qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] i_sum = 0 for i_p, length in enumerate(hidden_length): encoder_qkv_tokens = encoder_qkv[i_p::num_stages] qkv_tokens = qkv[:, i_sum:i_sum+length] concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim] if image_rotary_emb is not None: concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p]) indices = encoder_attention_mask[i_p]['indices'] qkv_list.append(index_first_axis(rearrange(concat_qkv_tokens, "b s ... -> (b s) ..."), indices)) i_sum += length token_lengths = [x_.shape[0] for x_ in qkv_list] qkv = torch.cat(qkv_list, dim=0) query, key, value = qkv.unbind(1) cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0) max_seqlen_q = cu_seqlens.max().item() max_seqlen_k = max_seqlen_q cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0)) cu_seqlens_k = cu_seqlens_q.clone() output = flash_attn_varlen_func( query, key, value, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=0.0, causal=False, softmax_scale=scale, ) # To merge the tokens i_sum = 0;token_sum = 0 for i_p, length in enumerate(hidden_length): tot_token_num = token_lengths[i_p] stage_output = output[token_sum : token_sum + tot_token_num] stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, encoder_length + length) stage_encoder_hidden_output = stage_output[:, :encoder_length] stage_hidden_output = stage_output[:, encoder_length:] output_hidden[:, i_sum:i_sum+length] = stage_hidden_output output_encoder_hidden[i_p::num_stages] = stage_encoder_hidden_output token_sum += tot_token_num i_sum += length output_hidden = output_hidden.flatten(2, 3) output_encoder_hidden = output_encoder_hidden.flatten(2, 3) return output_hidden, output_encoder_hidden class SequenceParallelVarlenSelfAttentionWithT5Mask: def __init__(self): pass def __call__( self, query, key, value, encoder_query, encoder_key, encoder_value, heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None, ): assert attention_mask is not None, "The attention mask needed to be set" num_stages = len(hidden_length) encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim] qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] # To sync the encoder query, key and values sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() encoder_qkv = all_to_all(encoder_qkv, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] encoder_length = encoder_qkv.shape[1] i_sum = 0 output_encoder_hidden_list = [] output_hidden_list = [] for i_p, length in enumerate(hidden_length): encoder_qkv_tokens = encoder_qkv[i_p::num_stages] qkv_tokens = qkv[:, i_sum:i_sum+length] qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim] if image_rotary_emb is not None: concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p]) query, key, value = concat_qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim] query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) stage_hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p], ) stage_hidden_states = stage_hidden_states.transpose(1, 2) # [bs, tot_seq, nhead, dim] output_encoder_hidden_list.append(stage_hidden_states[:, :encoder_length]) output_hidden = stage_hidden_states[:, encoder_length:] output_hidden = all_to_all(output_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) output_hidden_list.append(output_hidden) i_sum += length output_encoder_hidden = torch.stack(output_encoder_hidden_list, dim=1) # [b n s nhead d] output_encoder_hidden = rearrange(output_encoder_hidden, 'b n s h d -> (b n) s h d') output_encoder_hidden = all_to_all(output_encoder_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) output_encoder_hidden = output_encoder_hidden.flatten(2, 3) output_hidden = torch.cat(output_hidden_list, dim=1).flatten(2, 3) return output_hidden, output_encoder_hidden class VarlenSelfAttentionWithT5Mask: def __init__(self): pass def __call__( self, query, key, value, encoder_query, encoder_key, encoder_value, heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None, ): assert attention_mask is not None, "The attention mask needed to be set" encoder_length = encoder_query.shape[1] num_stages = len(hidden_length) encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim] qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] i_sum = 0 output_encoder_hidden_list = [] output_hidden_list = [] for i_p, length in enumerate(hidden_length): encoder_qkv_tokens = encoder_qkv[i_p::num_stages] qkv_tokens = qkv[:, i_sum:i_sum+length] concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim] if image_rotary_emb is not None: concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p]) query, key, value = concat_qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim] query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=False, enable_mem_efficient=True): stage_hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p], ) stage_hidden_states = stage_hidden_states.transpose(1, 2).flatten(2, 3) # [bs, tot_seq, dim] output_encoder_hidden_list.append(stage_hidden_states[:, :encoder_length]) output_hidden_list.append(stage_hidden_states[:, encoder_length:]) i_sum += length output_encoder_hidden = torch.stack(output_encoder_hidden_list, dim=1) # [b n s d] output_encoder_hidden = rearrange(output_encoder_hidden, 'b n s d -> (b n) s d') output_hidden = torch.cat(output_hidden_list, dim=1) return output_hidden, output_encoder_hidden class SequenceParallelVarlenFlashAttnSingle: def __init__(self): pass def __call__( self, query, key, value, heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None, ): assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set" batch_size = query.shape[0] qkv_list = [] num_stages = len(hidden_length) qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] output_hidden = torch.zeros_like(qkv[:,:,0]) sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() i_sum = 0 for i_p, length in enumerate(hidden_length): # get the query, key, value from padding sequence qkv_tokens = qkv[:, i_sum:i_sum+length] qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] if image_rotary_emb is not None: qkv_tokens[:,:,0], qkv_tokens[:,:,1] = apply_rope(qkv_tokens[:,:,0], qkv_tokens[:,:,1], image_rotary_emb[i_p]) indices = encoder_attention_mask[i_p]['indices'] qkv_list.append(index_first_axis(rearrange(qkv_tokens, "b s ... -> (b s) ..."), indices)) i_sum += length token_lengths = [x_.shape[0] for x_ in qkv_list] qkv = torch.cat(qkv_list, dim=0) query, key, value = qkv.unbind(1) cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0) max_seqlen_q = cu_seqlens.max().item() max_seqlen_k = max_seqlen_q cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0)) cu_seqlens_k = cu_seqlens_q.clone() output = flash_attn_varlen_func( query, key, value, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=0.0, causal=False, softmax_scale=scale, ) # To merge the tokens i_sum = 0;token_sum = 0 for i_p, length in enumerate(hidden_length): tot_token_num = token_lengths[i_p] stage_output = output[token_sum : token_sum + tot_token_num] stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, length * sp_group_size) stage_hidden_output = all_to_all(stage_output, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) output_hidden[:, i_sum:i_sum+length] = stage_hidden_output token_sum += tot_token_num i_sum += length output_hidden = output_hidden.flatten(2, 3) return output_hidden class VarlenFlashSelfAttnSingle: def __init__(self): pass def __call__( self, query, key, value, heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None, ): assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set" batch_size = query.shape[0] output_hidden = torch.zeros_like(query) qkv_list = [] num_stages = len(hidden_length) qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] i_sum = 0 for i_p, length in enumerate(hidden_length): qkv_tokens = qkv[:, i_sum:i_sum+length] if image_rotary_emb is not None: qkv_tokens[:,:,0], qkv_tokens[:,:,1] = apply_rope(qkv_tokens[:,:,0], qkv_tokens[:,:,1], image_rotary_emb[i_p]) indices = encoder_attention_mask[i_p]['indices'] qkv_list.append(index_first_axis(rearrange(qkv_tokens, "b s ... -> (b s) ..."), indices)) i_sum += length token_lengths = [x_.shape[0] for x_ in qkv_list] qkv = torch.cat(qkv_list, dim=0) query, key, value = qkv.unbind(1) cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0) max_seqlen_q = cu_seqlens.max().item() max_seqlen_k = max_seqlen_q cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0)) cu_seqlens_k = cu_seqlens_q.clone() output = flash_attn_varlen_func( query, key, value, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=0.0, causal=False, softmax_scale=scale, ) # To merge the tokens i_sum = 0;token_sum = 0 for i_p, length in enumerate(hidden_length): tot_token_num = token_lengths[i_p] stage_output = output[token_sum : token_sum + tot_token_num] stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, length) output_hidden[:, i_sum:i_sum+length] = stage_output token_sum += tot_token_num i_sum += length output_hidden = output_hidden.flatten(2, 3) return output_hidden class SequenceParallelVarlenAttnSingle: def __init__(self): pass def __call__( self, query, key, value, heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None, ): assert attention_mask is not None, "The attention mask needed to be set" num_stages = len(hidden_length) qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] # To sync the encoder query, key and values sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() i_sum = 0 output_hidden_list = [] for i_p, length in enumerate(hidden_length): qkv_tokens = qkv[:, i_sum:i_sum+length] qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] if image_rotary_emb is not None: qkv_tokens[:,:,0], qkv_tokens[:,:,1] = apply_rope(qkv_tokens[:,:,0], qkv_tokens[:,:,1], image_rotary_emb[i_p]) query, key, value = qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim] query = query.transpose(1, 2).contiguous() key = key.transpose(1, 2).contiguous() value = value.transpose(1, 2).contiguous() stage_hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p], ) stage_hidden_states = stage_hidden_states.transpose(1, 2) # [bs, tot_seq, nhead, dim] output_hidden = stage_hidden_states output_hidden = all_to_all(output_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) output_hidden_list.append(output_hidden) i_sum += length output_hidden = torch.cat(output_hidden_list, dim=1).flatten(2, 3) return output_hidden class VarlenSelfAttnSingle: def __init__(self): pass def __call__( self, query, key, value, heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None, ): assert attention_mask is not None, "The attention mask needed to be set" num_stages = len(hidden_length) qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] i_sum = 0 output_hidden_list = [] for i_p, length in enumerate(hidden_length): qkv_tokens = qkv[:, i_sum:i_sum+length] if image_rotary_emb is not None: qkv_tokens[:,:,0], qkv_tokens[:,:,1] = apply_rope(qkv_tokens[:,:,0], qkv_tokens[:,:,1], image_rotary_emb[i_p]) query, key, value = qkv_tokens.unbind(2) query = query.transpose(1, 2).contiguous() key = key.transpose(1, 2).contiguous() value = value.transpose(1, 2).contiguous() stage_hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p], ) stage_hidden_states = stage_hidden_states.transpose(1, 2).flatten(2, 3) # [bs, tot_seq, dim] output_hidden_list.append(stage_hidden_states) i_sum += length output_hidden = torch.cat(output_hidden_list, dim=1) return output_hidden class Attention(nn.Module): def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias: bool = False, qk_norm: Optional[str] = None, added_kv_proj_dim: Optional[int] = None, added_proj_bias: Optional[bool] = True, out_bias: bool = True, only_cross_attention: bool = False, eps: float = 1e-5, processor: Optional["AttnProcessor"] = None, out_dim: int = None, context_pre_only=None, pre_only=False, ): super().__init__() self.inner_dim = out_dim if out_dim is not None else dim_head * heads self.inner_kv_dim = self.inner_dim self.query_dim = query_dim self.use_bias = bias self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.dropout = dropout self.out_dim = out_dim if out_dim is not None else query_dim self.context_pre_only = context_pre_only self.pre_only = pre_only self.scale = dim_head**-0.5 self.heads = out_dim // dim_head if out_dim is not None else heads self.added_kv_proj_dim = added_kv_proj_dim self.only_cross_attention = only_cross_attention if self.added_kv_proj_dim is None and self.only_cross_attention: raise ValueError( "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." ) if qk_norm is None: self.norm_q = None self.norm_k = None elif qk_norm == "rms_norm": self.norm_q = RMSNorm(dim_head, eps=eps) self.norm_k = RMSNorm(dim_head, eps=eps) else: raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'") self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) if not self.only_cross_attention: # only relevant for the `AddedKVProcessor` classes self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) else: self.to_k = None self.to_v = None self.added_proj_bias = added_proj_bias if self.added_kv_proj_dim is not None: self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) if self.context_pre_only is not None: self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) if not self.pre_only: self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) self.to_out.append(nn.Dropout(dropout)) if self.context_pre_only is not None and not self.context_pre_only: self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias) if qk_norm is not None and added_kv_proj_dim is not None: if qk_norm == "fp32_layer_norm": self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) elif qk_norm == "rms_norm": self.norm_added_q = RMSNorm(dim_head, eps=eps) self.norm_added_k = RMSNorm(dim_head, eps=eps) else: self.norm_added_q = None self.norm_added_k = None # set attention processor self.set_processor(processor) def set_processor(self, processor: "AttnProcessor") -> None: self.processor = processor def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, hidden_length: List = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: return self.processor( self, hidden_states, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, attention_mask=attention_mask, hidden_length=hidden_length, image_rotary_emb=image_rotary_emb, ) class FluxSingleAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, use_flash_attn=False): self.use_flash_attn = use_flash_attn if self.use_flash_attn: if is_sequence_parallel_initialized(): self.varlen_flash_attn = SequenceParallelVarlenFlashAttnSingle() else: self.varlen_flash_attn = VarlenFlashSelfAttnSingle() else: if is_sequence_parallel_initialized(): self.varlen_attn = SequenceParallelVarlenAttnSingle() else: self.varlen_attn = VarlenSelfAttnSingle() def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.FloatTensor] = None, hidden_length: List = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(query.shape[0], -1, attn.heads, head_dim) key = key.view(key.shape[0], -1, attn.heads, head_dim) value = value.view(value.shape[0], -1, attn.heads, head_dim) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if self.use_flash_attn: hidden_states = self.varlen_flash_attn( query, key, value, attn.heads, attn.scale, hidden_length, image_rotary_emb, encoder_attention_mask, ) else: hidden_states = self.varlen_attn( query, key, value, attn.heads, attn.scale, hidden_length, image_rotary_emb, attention_mask, ) return hidden_states class FluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self, use_flash_attn=False): self.use_flash_attn = use_flash_attn if self.use_flash_attn: if is_sequence_parallel_initialized(): self.varlen_flash_attn = SequenceParallelVarlenFlashSelfAttentionWithT5Mask() else: self.varlen_flash_attn = VarlenFlashSelfAttentionWithT5Mask() else: if is_sequence_parallel_initialized(): self.varlen_attn = SequenceParallelVarlenSelfAttentionWithT5Mask() else: self.varlen_attn = VarlenSelfAttentionWithT5Mask() def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, encoder_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.FloatTensor] = None, hidden_length: List = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(query.shape[0], -1, attn.heads, head_dim) key = key.view(key.shape[0], -1, attn.heads, head_dim) value = value.view(value.shape[0], -1, attn.heads, head_dim) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( encoder_hidden_states_query_proj.shape[0], -1, attn.heads, head_dim ) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( encoder_hidden_states_key_proj.shape[0], -1, attn.heads, head_dim ) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( encoder_hidden_states_value_proj.shape[0], -1, attn.heads, head_dim ) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) if self.use_flash_attn: hidden_states, encoder_hidden_states = self.varlen_flash_attn( query, key, value, encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, attn.heads, attn.scale, hidden_length, image_rotary_emb, encoder_attention_mask, ) else: hidden_states, encoder_hidden_states = self.varlen_attn( query, key, value, encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, attn.heads, attn.scale, hidden_length, image_rotary_emb, attention_mask, ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states class FluxSingleTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0, use_flash_attn=False): super().__init__() self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm = AdaLayerNormZeroSingle(dim) self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) processor = FluxSingleAttnProcessor2_0(use_flash_attn) self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm="rms_norm", eps=1e-6, pre_only=True, ) def forward( self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, encoder_attention_mask=None, attention_mask=None, hidden_length=None, image_rotary_emb=None, ): residual = hidden_states norm_hidden_states, gate = self.norm(hidden_states, emb=temb, hidden_length=hidden_length) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=None, encoder_attention_mask=encoder_attention_mask, attention_mask=attention_mask, hidden_length=hidden_length, image_rotary_emb=image_rotary_emb, ) hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states class FluxTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6, use_flash_attn=False): super().__init__() self.norm1 = AdaLayerNormZero(dim) self.norm1_context = AdaLayerNormZero(dim) if hasattr(F, "scaled_dot_product_attention"): processor = FluxAttnProcessor2_0(use_flash_attn) else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=False, bias=True, processor=processor, qk_norm=qk_norm, eps=eps, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, encoder_attention_mask: torch.FloatTensor, temb: torch.FloatTensor, attention_mask: torch.FloatTensor = None, hidden_length: List = None, image_rotary_emb=None, ): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb, hidden_length=hidden_length) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, attention_mask=attention_mask, hidden_length=hidden_length, image_rotary_emb=image_rotary_emb, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return encoder_hidden_states, hidden_states