from typing import Any, Dict, List, Optional, Union import torch import os import torch.nn as nn import torch.nn.functional as F from einops import rearrange from tqdm import tqdm from diffusers.utils.torch_utils import randn_tensor from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import is_torch_version from .modeling_normalization import AdaLayerNormContinuous from .modeling_embedding import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings from .modeling_flux_block import FluxTransformerBlock, FluxSingleTransformerBlock from trainer_misc import ( is_sequence_parallel_initialized, get_sequence_parallel_group, get_sequence_parallel_world_size, get_sequence_parallel_rank, all_to_all, ) def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: assert dim % 2 == 0, "The dimension must be even." scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim omega = 1.0 / (theta**scale) batch_size, seq_length = pos.shape out = torch.einsum("...n,d->...nd", pos, omega) cos_out = torch.cos(out) sin_out = torch.sin(out) stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) return out.float() class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: List[int]): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim def forward(self, ids: torch.Tensor) -> torch.Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(2) class PyramidFluxTransformer(ModelMixin, ConfigMixin): """ The Transformer model introduced in Flux. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Parameters: patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, patch_size: int = 1, in_channels: int = 64, num_layers: int = 19, num_single_layers: int = 38, attention_head_dim: int = 64, num_attention_heads: int = 24, joint_attention_dim: int = 4096, pooled_projection_dim: int = 768, axes_dims_rope: List[int] = [16, 24, 24], use_flash_attn: bool = False, use_temporal_causal: bool = True, interp_condition_pos: bool = True, use_gradient_checkpointing: bool = False, gradient_checkpointing_ratio: float = 0.6, ): super().__init__() self.out_channels = in_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.pos_embed = EmbedND(dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope) self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim ) self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) self.transformer_blocks = nn.ModuleList( [ FluxTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, use_flash_attn=use_flash_attn, ) for i in range(self.config.num_layers) ] ) self.single_transformer_blocks = nn.ModuleList( [ FluxSingleTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, use_flash_attn=use_flash_attn, ) for i in range(self.config.num_single_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = use_gradient_checkpointing self.gradient_checkpointing_ratio = gradient_checkpointing_ratio self.use_temporal_causal = use_temporal_causal if self.use_temporal_causal: print("Using temporal causal attention") self.use_flash_attn = use_flash_attn if self.use_flash_attn: print("Using Flash attention") self.patch_size = 2 # hard-code for now # init weights self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize all the conditioning to normal init nn.init.normal_(self.time_text_embed.timestep_embedder.linear_1.weight, std=0.02) nn.init.normal_(self.time_text_embed.timestep_embedder.linear_2.weight, std=0.02) nn.init.normal_(self.time_text_embed.text_embedder.linear_1.weight, std=0.02) nn.init.normal_(self.time_text_embed.text_embedder.linear_2.weight, std=0.02) nn.init.normal_(self.context_embedder.weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.transformer_blocks: nn.init.constant_(block.norm1.linear.weight, 0) nn.init.constant_(block.norm1.linear.bias, 0) nn.init.constant_(block.norm1_context.linear.weight, 0) nn.init.constant_(block.norm1_context.linear.bias, 0) for block in self.single_transformer_blocks: nn.init.constant_(block.norm.linear.weight, 0) nn.init.constant_(block.norm.linear.bias, 0) # Zero-out output layers: nn.init.constant_(self.norm_out.linear.weight, 0) nn.init.constant_(self.norm_out.linear.bias, 0) nn.init.constant_(self.proj_out.weight, 0) nn.init.constant_(self.proj_out.bias, 0) @torch.no_grad() def _prepare_image_ids(self, batch_size, temp, height, width, train_height, train_width, device, start_time_stamp=0): latent_image_ids = torch.zeros(temp, height, width, 3) # Temporal Rope latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(start_time_stamp, start_time_stamp + temp)[:, None, None] # height Rope if height != train_height: height_pos = F.interpolate(torch.arange(train_height)[None, None, :].float(), height, mode='linear').squeeze(0, 1) else: height_pos = torch.arange(train_height).float() latent_image_ids[..., 1] = latent_image_ids[..., 1] + height_pos[None, :, None] # width rope if width != train_width: width_pos = F.interpolate(torch.arange(train_width)[None, None, :].float(), width, mode='linear').squeeze(0, 1) else: width_pos = torch.arange(train_width).float() latent_image_ids[..., 2] = latent_image_ids[..., 2] + width_pos[None, None, :] latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1) latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c') return latent_image_ids.to(device=device) @torch.no_grad() def _prepare_pyramid_image_ids(self, sample, batch_size, device): image_ids_list = [] for i_b, sample_ in enumerate(sample): if not isinstance(sample_, list): sample_ = [sample_] cur_image_ids = [] start_time_stamp = 0 train_height = sample_[-1].shape[-2] // self.patch_size train_width = sample_[-1].shape[-1] // self.patch_size for clip_ in sample_: _, _, temp, height, width = clip_.shape height = height // self.patch_size width = width // self.patch_size cur_image_ids.append(self._prepare_image_ids(batch_size, temp, height, width, train_height, train_width, device, start_time_stamp=start_time_stamp)) start_time_stamp += temp cur_image_ids = torch.cat(cur_image_ids, dim=1) image_ids_list.append(cur_image_ids) return image_ids_list def merge_input(self, sample, encoder_hidden_length, encoder_attention_mask): """ Merge the input video with different resolutions into one sequence Sample: From low resolution to high resolution """ if isinstance(sample[0], list): device = sample[0][-1].device pad_batch_size = sample[0][-1].shape[0] else: device = sample[0].device pad_batch_size = sample[0].shape[0] num_stages = len(sample) height_list = [];width_list = [];temp_list = [] trainable_token_list = [] for i_b, sample_ in enumerate(sample): if isinstance(sample_, list): sample_ = sample_[-1] _, _, temp, height, width = sample_.shape height = height // self.patch_size width = width // self.patch_size temp_list.append(temp) height_list.append(height) width_list.append(width) trainable_token_list.append(height * width * temp) # prepare the RoPE IDs, image_ids_list = self._prepare_pyramid_image_ids(sample, pad_batch_size, device) text_ids = torch.zeros(pad_batch_size, encoder_attention_mask.shape[1], 3).to(device=device) input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list] image_rotary_emb = [self.pos_embed(input_ids) for input_ids in input_ids_list] # [bs, seq_len, 1, head_dim // 2, 2, 2] if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() concat_output = True if self.training else False image_rotary_emb = [all_to_all(x_.repeat(1, 1, sp_group_size, 1, 1, 1), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output) for x_ in image_rotary_emb] input_ids_list = [all_to_all(input_ids.repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output) for input_ids in input_ids_list] hidden_states, hidden_length = [], [] for sample_ in sample: video_tokens = [] for each_latent in sample_: each_latent = rearrange(each_latent, 'b c t h w -> b t h w c') each_latent = rearrange(each_latent, 'b t (h p1) (w p2) c -> b (t h w) (p1 p2 c)', p1=self.patch_size, p2=self.patch_size) video_tokens.append(each_latent) video_tokens = torch.cat(video_tokens, dim=1) video_tokens = self.x_embedder(video_tokens) hidden_states.append(video_tokens) hidden_length.append(video_tokens.shape[1]) # prepare the attention mask if self.use_flash_attn: attention_mask = None indices_list = [] for i_p, length in enumerate(hidden_length): pad_attention_mask = torch.ones((pad_batch_size, length), dtype=encoder_attention_mask.dtype).to(device) pad_attention_mask = torch.cat([encoder_attention_mask[i_p::num_stages], pad_attention_mask], dim=1) if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() pad_attention_mask = all_to_all(pad_attention_mask.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) pad_attention_mask = pad_attention_mask.squeeze(2) seqlens_in_batch = pad_attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(pad_attention_mask.flatten(), as_tuple=False).flatten() indices_list.append( { 'indices': indices, 'seqlens_in_batch': seqlens_in_batch, } ) encoder_attention_mask = indices_list else: assert encoder_attention_mask.shape[1] == encoder_hidden_length real_batch_size = encoder_attention_mask.shape[0] # prepare text ids text_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, encoder_hidden_length) text_ids = text_ids.to(device) text_ids[encoder_attention_mask == 0] = 0 # prepare image ids image_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, max(hidden_length)) image_ids = image_ids.to(device) image_ids_list = [] for i_p, length in enumerate(hidden_length): image_ids_list.append(image_ids[i_p::num_stages][:, :length]) if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() concat_output = True if self.training else False text_ids = all_to_all(text_ids.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output).squeeze(2) image_ids_list = [all_to_all(image_ids_.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output).squeeze(2) for image_ids_ in image_ids_list] attention_mask = [] for i_p in range(len(hidden_length)): image_ids = image_ids_list[i_p] token_ids = torch.cat([text_ids[i_p::num_stages], image_ids], dim=1) stage_attention_mask = rearrange(token_ids, 'b i -> b 1 i 1') == rearrange(token_ids, 'b j -> b 1 1 j') # [bs, 1, q_len, k_len] if self.use_temporal_causal: input_order_ids = input_ids_list[i_p][:,:,0] temporal_causal_mask = rearrange(input_order_ids, 'b i -> b 1 i 1') >= rearrange(input_order_ids, 'b j -> b 1 1 j') stage_attention_mask = stage_attention_mask & temporal_causal_mask attention_mask.append(stage_attention_mask) return hidden_states, hidden_length, temp_list, height_list, width_list, trainable_token_list, encoder_attention_mask, attention_mask, image_rotary_emb def split_output(self, batch_hidden_states, hidden_length, temps, heights, widths, trainable_token_list): # To split the hidden states batch_size = batch_hidden_states.shape[0] output_hidden_list = [] batch_hidden_states = torch.split(batch_hidden_states, hidden_length, dim=1) if is_sequence_parallel_initialized(): sp_group_size = get_sequence_parallel_world_size() if self.training: batch_size = batch_size // sp_group_size for i_p, length in enumerate(hidden_length): width, height, temp = widths[i_p], heights[i_p], temps[i_p] trainable_token_num = trainable_token_list[i_p] hidden_states = batch_hidden_states[i_p] if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() if not self.training: hidden_states = hidden_states.repeat(sp_group_size, 1, 1) hidden_states = all_to_all(hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1) # only the trainable token are taking part in loss computation hidden_states = hidden_states[:, -trainable_token_num:] # unpatchify hidden_states = hidden_states.reshape( shape=(batch_size, temp, height, width, self.patch_size, self.patch_size, self.out_channels // 4) ) hidden_states = rearrange(hidden_states, "b t h w p1 p2 c -> b t (h p1) (w p2) c") hidden_states = rearrange(hidden_states, "b t h w c -> b c t h w") output_hidden_list.append(hidden_states) return output_hidden_list def forward( self, sample: torch.FloatTensor, # [num_stages] encoder_hidden_states: torch.Tensor = None, encoder_attention_mask: torch.FloatTensor = None, pooled_projections: torch.Tensor = None, timestep_ratio: torch.LongTensor = None, ): temb = self.time_text_embed(timestep_ratio, pooled_projections) encoder_hidden_states = self.context_embedder(encoder_hidden_states) encoder_hidden_length = encoder_hidden_states.shape[1] # Get the input sequence hidden_states, hidden_length, temps, heights, widths, trainable_token_list, encoder_attention_mask, attention_mask, \ image_rotary_emb = self.merge_input(sample, encoder_hidden_length, encoder_attention_mask) # split the long latents if necessary if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() concat_output = True if self.training else False # sync the input hidden states batch_hidden_states = [] for i_p, hidden_states_ in enumerate(hidden_states): assert hidden_states_.shape[1] % sp_group_size == 0, "The sequence length should be divided by sequence parallel size" hidden_states_ = all_to_all(hidden_states_, sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output) hidden_length[i_p] = hidden_length[i_p] // sp_group_size batch_hidden_states.append(hidden_states_) # sync the encoder hidden states hidden_states = torch.cat(batch_hidden_states, dim=1) encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output) temb = all_to_all(temb.unsqueeze(1).repeat(1, sp_group_size, 1), sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output) temb = temb.squeeze(1) else: hidden_states = torch.cat(hidden_states, dim=1) for index_block, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing and (index_block <= int(len(self.transformer_blocks) * self.gradient_checkpointing_ratio)): def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, encoder_attention_mask, temb, attention_mask, hidden_length, image_rotary_emb, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, temb=temb, attention_mask=attention_mask, hidden_length=hidden_length, image_rotary_emb=image_rotary_emb, ) # remerge for single attention block num_stages = len(hidden_length) batch_hidden_states = list(torch.split(hidden_states, hidden_length, dim=1)) concat_hidden_length = [] if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1) for i_p in range(len(hidden_length)): if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=0, gather_dim=1) batch_hidden_states[i_p] = torch.cat([encoder_hidden_states[i_p::num_stages], batch_hidden_states[i_p]], dim=1) if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=1, gather_dim=0) concat_hidden_length.append(batch_hidden_states[i_p].shape[1]) hidden_states = torch.cat(batch_hidden_states, dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if self.training and self.gradient_checkpointing and (index_block <= int(len(self.single_transformer_blocks) * self.gradient_checkpointing_ratio)): def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, encoder_attention_mask, attention_mask, concat_hidden_length, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, encoder_attention_mask=encoder_attention_mask, # used for attention_mask=attention_mask, hidden_length=concat_hidden_length, image_rotary_emb=image_rotary_emb, ) batch_hidden_states = list(torch.split(hidden_states, concat_hidden_length, dim=1)) for i_p in range(len(concat_hidden_length)): if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=0, gather_dim=1) batch_hidden_states[i_p] = batch_hidden_states[i_p][:, encoder_hidden_length :, ...] if is_sequence_parallel_initialized(): sp_group = get_sequence_parallel_group() sp_group_size = get_sequence_parallel_world_size() batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=1, gather_dim=0) hidden_states = torch.cat(batch_hidden_states, dim=1) hidden_states = self.norm_out(hidden_states, temb, hidden_length=hidden_length) hidden_states = self.proj_out(hidden_states) output = self.split_output(hidden_states, hidden_length, temps, heights, widths, trainable_token_list) return output