|
|
|
import sys |
|
import copy |
|
from typing import Tuple |
|
from PIL import Image |
|
import gradio as gr |
|
import supervision as sv |
|
|
|
|
|
from src.utils.processing import clean_text, draw_ocr_bboxes |
|
from src.app.model import run_example |
|
from src.logger import logging |
|
from src.exception import CustomExceptionHandling |
|
|
|
|
|
def ocr_task(image: Image.Image) -> Tuple[Image.Image, str]: |
|
""" |
|
Perform OCR (Optical Character Recognition) on the given image. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image to perform OCR on. |
|
|
|
Returns: |
|
tuple: A tuple containing the output image with OCR bounding boxes drawn and the cleaned OCR text. |
|
""" |
|
try: |
|
|
|
ocr_prompt = "<OCR>" |
|
ocr_with_region_prompt = "<OCR_WITH_REGION>" |
|
|
|
|
|
ocr_results = run_example(ocr_prompt, image) |
|
cleaned_text = clean_text(ocr_results["<OCR>"]) |
|
|
|
|
|
logging.info("OCR text extracted and cleaned successfully.") |
|
|
|
|
|
ocr_with_region_results = run_example(ocr_with_region_prompt, image) |
|
output_image = copy.deepcopy(image) |
|
detections = sv.Detections.from_lmm( |
|
lmm=sv.LMM.FLORENCE_2, |
|
result=ocr_with_region_results, |
|
resolution_wh=image.size, |
|
) |
|
output_image = draw_ocr_bboxes(image, detections) |
|
|
|
|
|
logging.info("OCR bounding boxes drawn successfully.") |
|
|
|
|
|
return output_image, cleaned_text |
|
|
|
|
|
except Exception as e: |
|
|
|
raise CustomExceptionHandling(e, sys) from e |
|
|