sitammeur commited on
Commit
1b3384e
1 Parent(s): c45cf35

Delete src/model.py

Browse files
Files changed (1) hide show
  1. src/model.py +0 -60
src/model.py DELETED
@@ -1,60 +0,0 @@
1
- # Importing necessary libraries
2
- import gradio as gr
3
- import subprocess
4
- import spaces
5
- from transformers import AutoProcessor, AutoModelForCausalLM
6
-
7
-
8
- # Install the required dependencies
9
- subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
10
-
11
- # Load model and processor from Hugging Face
12
- model_id = "microsoft/Florence-2-large-ft"
13
- model = (
14
- AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
15
- )
16
- processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
17
-
18
-
19
- @spaces.GPU(duration=120)
20
- def run_example(task_prompt, image, text_input=None):
21
- """
22
- Runs an example using the given task prompt and image.
23
-
24
- Args:
25
- - task_prompt (str): The task prompt for the example.
26
- - image (PIL.Image.Image): The image to be processed.
27
- - text_input (str, optional): Additional text input to be appended to the task prompt. Defaults to None.
28
-
29
- Returns:
30
- str: The parsed answer generated by the model.
31
- """
32
- # Check if the image is provided
33
- if not image:
34
- raise gr.Error("No image provided")
35
-
36
- # If there is no text input, use the task prompt as the prompt
37
- if text_input is None:
38
- prompt = task_prompt
39
- else:
40
- prompt = task_prompt + text_input
41
-
42
- # Process the image and text input
43
- inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
44
-
45
- # Generate the answer using the model
46
- generated_ids = model.generate(
47
- input_ids=inputs["input_ids"],
48
- pixel_values=inputs["pixel_values"],
49
- max_new_tokens=1024,
50
- early_stopping=False,
51
- do_sample=False,
52
- num_beams=3,
53
- )
54
- generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
55
- parsed_answer = processor.post_process_generation(
56
- generated_text, task=task_prompt, image_size=(image.width, image.height)
57
- )
58
-
59
- # Return the parsed answer
60
- return parsed_answer