Update src/model.py
Browse files- src/model.py +52 -52
src/model.py
CHANGED
@@ -1,52 +1,52 @@
|
|
1 |
-
# Importing necessary libraries
|
2 |
-
import spaces
|
3 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
4 |
-
|
5 |
-
|
6 |
-
# Load model and processor from Hugging Face
|
7 |
-
model_id = "microsoft/Florence-2-large-ft"
|
8 |
-
model = (
|
9 |
-
AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).
|
10 |
-
)
|
11 |
-
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
12 |
-
|
13 |
-
|
14 |
-
@spaces.GPU(duration=120)
|
15 |
-
def run_example(task_prompt, image, text_input=None):
|
16 |
-
"""
|
17 |
-
Runs an example using the given task prompt and image.
|
18 |
-
|
19 |
-
Args:
|
20 |
-
task_prompt (str): The task prompt for the example.
|
21 |
-
image (PIL.Image.Image): The image to be processed.
|
22 |
-
text_input (str, optional): Additional text input to be appended to the task prompt. Defaults to None.
|
23 |
-
|
24 |
-
Returns:
|
25 |
-
str: The parsed answer generated by the model.
|
26 |
-
"""
|
27 |
-
|
28 |
-
# If there is no text input, use the task prompt as the prompt
|
29 |
-
if text_input is None:
|
30 |
-
prompt = task_prompt
|
31 |
-
else:
|
32 |
-
prompt = task_prompt + text_input
|
33 |
-
|
34 |
-
# Process the image and text input
|
35 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
36 |
-
|
37 |
-
# Generate the answer using the model
|
38 |
-
generated_ids = model.generate(
|
39 |
-
input_ids=inputs["input_ids"]
|
40 |
-
pixel_values=inputs["pixel_values"]
|
41 |
-
max_new_tokens=1024,
|
42 |
-
early_stopping=False,
|
43 |
-
do_sample=False,
|
44 |
-
num_beams=3,
|
45 |
-
)
|
46 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
47 |
-
parsed_answer = processor.post_process_generation(
|
48 |
-
generated_text, task=task_prompt, image_size=(image.width, image.height)
|
49 |
-
)
|
50 |
-
|
51 |
-
# Return the parsed answer
|
52 |
-
return parsed_answer
|
|
|
1 |
+
# Importing necessary libraries
|
2 |
+
import spaces
|
3 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
4 |
+
|
5 |
+
|
6 |
+
# Load model and processor from Hugging Face
|
7 |
+
model_id = "microsoft/Florence-2-large-ft"
|
8 |
+
model = (
|
9 |
+
AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
|
10 |
+
)
|
11 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
12 |
+
|
13 |
+
|
14 |
+
@spaces.GPU(duration=120)
|
15 |
+
def run_example(task_prompt, image, text_input=None):
|
16 |
+
"""
|
17 |
+
Runs an example using the given task prompt and image.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
task_prompt (str): The task prompt for the example.
|
21 |
+
image (PIL.Image.Image): The image to be processed.
|
22 |
+
text_input (str, optional): Additional text input to be appended to the task prompt. Defaults to None.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
str: The parsed answer generated by the model.
|
26 |
+
"""
|
27 |
+
|
28 |
+
# If there is no text input, use the task prompt as the prompt
|
29 |
+
if text_input is None:
|
30 |
+
prompt = task_prompt
|
31 |
+
else:
|
32 |
+
prompt = task_prompt + text_input
|
33 |
+
|
34 |
+
# Process the image and text input
|
35 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
36 |
+
|
37 |
+
# Generate the answer using the model
|
38 |
+
generated_ids = model.generate(
|
39 |
+
input_ids=inputs["input_ids"],
|
40 |
+
pixel_values=inputs["pixel_values"],
|
41 |
+
max_new_tokens=1024,
|
42 |
+
early_stopping=False,
|
43 |
+
do_sample=False,
|
44 |
+
num_beams=3,
|
45 |
+
)
|
46 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
47 |
+
parsed_answer = processor.post_process_generation(
|
48 |
+
generated_text, task=task_prompt, image_size=(image.width, image.height)
|
49 |
+
)
|
50 |
+
|
51 |
+
# Return the parsed answer
|
52 |
+
return parsed_answer
|