File size: 6,050 Bytes
a7151dc
 
 
 
 
 
 
 
 
 
20980dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7151dc
 
 
 
 
 
 
 
20980dc
 
 
a7151dc
 
 
20980dc
 
 
 
 
a7151dc
20980dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45e8db4
ebf9fbf
20980dc
 
 
45e8db4
ebf9fbf
20980dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
try:
    import torch
    import torchvision
except ImportError:
    import subprocess
    import sys
    subprocess.check_call([sys.executable, "-m", "pip", "install", "torch", "torchvision"])
    import torch
    import torchvision

import gradio as gr
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from transformers import pipeline
from scipy.ndimage import gaussian_filter

def preprocess_image(image, target_size=(512, 512)):
    """Preprocess the input image"""
    if isinstance(image, str):
        image = Image.open(image)
    elif isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # Calculate aspect ratio preserving resize
    aspect_ratio = image.size[0] / image.size[1]
    if aspect_ratio > 1:
        new_width = int(target_size[0] * aspect_ratio)
        new_height = target_size[1]
    else:
        new_width = target_size[0]
        new_height = int(target_size[1] / aspect_ratio)

    preprocess = transforms.Compose([
        transforms.Resize((new_height, new_width)),
        transforms.CenterCrop(target_size),
    ])
    
    return preprocess(image)

def estimate_depth(image, pipe):
    """Estimate depth using the Depth-Anything model"""
    depth_output = pipe(image)
    depth_map = depth_output["depth"]
    depth_map = np.array(depth_map) / 16.67
    return depth_map

def apply_depth_aware_blur(image, depth_map, max_sigma, min_sigma):
    """Apply variable Gaussian blur based on depth values"""
    image_array = np.array(image)
    blurred = np.zeros_like(image_array, dtype=np.float32)
    
    # Calculate sigma for each depth value
    sigmas = np.interp(depth_map, [depth_map.min(), depth_map.max()], [min_sigma, max_sigma])
    unique_sigmas = np.unique(sigmas)
    blur_stack = {}

    # Create blurred versions for each unique sigma
    for sigma in unique_sigmas:
        if sigma > 0:
            blurred_image = np.zeros_like(image_array, dtype=np.float32)
            for channel in range(3):
                blurred_image[:, :, channel] = gaussian_filter(
                    image_array[:, :, channel].astype(np.float32),
                    sigma=sigma
                )
            blur_stack[sigma] = blurred_image

    # Combine blurred versions
    for sigma in unique_sigmas:
        if sigma > 0:
            mask = (sigmas == sigma)
            mask_3d = np.stack([mask] * 3, axis=2)
            blurred += mask_3d * blur_stack[sigma]
        else:
            mask = (sigmas == 0)
            mask_3d = np.stack([mask] * 3, axis=2)
            blurred += mask_3d * image_array

    return Image.fromarray(blurred.astype(np.uint8))

def apply_gaussian_blur(image, sigma):
    """Apply uniform Gaussian blur"""
    image_array = np.array(image)
    blurred = np.zeros_like(image_array)
    
    for channel in range(3):
        blurred[:, :, channel] = gaussian_filter(
            image_array[:, :, channel],
            sigma=sigma
        )
    
    return Image.fromarray(blurred.astype(np.uint8))

# Initialize depth estimation pipeline (moved inside the processing function to avoid CUDA issues)
def get_depth_pipeline():
    return pipeline(
        task="depth-estimation",
        model="depth-anything/Depth-Anything-V2-Small-hf",
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        device=0 if torch.cuda.is_available() else -1
    )

def process_image(image, blur_type, gaussian_sigma, lens_min_sigma, lens_max_sigma):
    """Main processing function for Gradio interface"""
    if image is None:
        return None
        
    processed_image = preprocess_image(image)
    
    if blur_type == "Gaussian Blur":
        result = apply_gaussian_blur(processed_image, gaussian_sigma)
    else:  # Lens Blur
        pipe = get_depth_pipeline()
        depth_map = estimate_depth(processed_image, pipe)
        result = apply_depth_aware_blur(processed_image, depth_map, lens_max_sigma, lens_min_sigma)
    
    return result

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Blur Effects Demo")
    gr.Markdown("Apply Gaussian or Lens (Depth-aware) blur to your images")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy")
            blur_type = gr.Radio(
                choices=["Gaussian Blur", "Lens Blur"],
                label="Blur Effect",
                value="Gaussian Blur"
            )
            
            with gr.Column(visible=True) as gaussian_controls:
                gaussian_sigma = gr.Slider(
                    minimum=0, maximum=20, value=5,
                    label="Gaussian Blur Sigma",
                    step=0.5
                )
            
            with gr.Column() as lens_controls:
                lens_min_sigma = gr.Slider(
                    minimum=0, maximum=20, value=15,
                    label="Maximum Blur (Far)",
                    step=0.5
                )
                lens_max_sigma = gr.Slider(
                    minimum=0, maximum=10, value=0,
                    label="Minimum Blur (Near)",
                    step=0.5
                )
            
            process_btn = gr.Button("Apply Blur")
        
        with gr.Column():
            output_image = gr.Image(label="Output Image")
    
    # Handle visibility of controls based on blur type selection
    def update_controls(blur_type):
        return {
            gaussian_controls: blur_type == "Gaussian Blur",
            lens_controls: blur_type == "Lens Blur"
        }
    
    blur_type.change(
        fn=update_controls,
        inputs=[blur_type],
        outputs=[gaussian_controls, lens_controls]
    )
    
    # Process image when button is clicked
    process_btn.click(
        fn=process_image,
        inputs=[
            input_image,
            blur_type,
            gaussian_sigma,
            lens_min_sigma,
            lens_max_sigma
        ],
        outputs=output_image
    )

# Launch the demo
demo.launch()