Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,67 @@
|
|
1 |
import gradio as gr
|
2 |
from diffusers import StableDiffusionPipeline
|
3 |
import torch
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Fine-tuned Stable Diffusion model
|
6 |
model_id = "sk2003/room-styler"
|
7 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
9 |
pipe.to(device)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def generate_image(prompt):
|
12 |
image = pipe(prompt).images[0]
|
13 |
return image
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from diffusers import StableDiffusionPipeline
|
3 |
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
+
# Fine-tuned Stable Diffusion model from your Hugging Face repository
|
10 |
model_id = "sk2003/room-styler"
|
11 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
12 |
+
|
13 |
+
# VGG16 model
|
14 |
+
vgg16_model_path = hf_hub_download(repo_id="sk2003/style_recognizer_vgg", filename="vgg16_model.pth")
|
15 |
+
vgg16 = torch.load(vgg16_model_path)
|
16 |
+
vgg16.eval()
|
17 |
+
|
18 |
+
# Device
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
vgg16.to(device)
|
21 |
pipe.to(device)
|
22 |
|
23 |
+
# Prediction function for the VGG16 model
|
24 |
+
def predict_and_show(image):
|
25 |
+
transform = transforms.Compose([
|
26 |
+
transforms.Resize((224, 224)),
|
27 |
+
transforms.ToTensor(),
|
28 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
29 |
+
])
|
30 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
31 |
+
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = vgg16(image_tensor)
|
34 |
+
_, predicted = torch.max(outputs.data, 1)
|
35 |
+
|
36 |
+
class_names = ["Class1", "Class2", "Class3"] # Replace with your actual class names
|
37 |
+
predicted_label = class_names[predicted.item()]
|
38 |
+
|
39 |
+
plt.imshow(image)
|
40 |
+
plt.title(f'Predicted: {predicted_label}')
|
41 |
+
plt.axis('off')
|
42 |
+
plt.show()
|
43 |
+
|
44 |
+
return predicted_label
|
45 |
+
|
46 |
+
# Generation function for the Stable Diffusion model
|
47 |
def generate_image(prompt):
|
48 |
image = pipe(prompt).images[0]
|
49 |
return image
|
50 |
|
51 |
+
# Gradio interface
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
gr.Markdown("## Room Style Recognition and Generation")
|
54 |
+
|
55 |
+
with gr.Tab("Recognize Room Style"):
|
56 |
+
image_input = gr.Image(type="pil")
|
57 |
+
label_output = gr.Textbox()
|
58 |
+
btn_predict = gr.Button("Predict Style")
|
59 |
+
btn_predict.click(predict_and_show, inputs=image_input, outputs=label_output)
|
60 |
+
|
61 |
+
with gr.Tab("Generate Room Style"):
|
62 |
+
text_input = gr.Textbox(placeholder="Enter a prompt for room style...")
|
63 |
+
image_output = gr.Image()
|
64 |
+
btn_generate = gr.Button("Generate Image")
|
65 |
+
btn_generate.click(generate_image, inputs=text_input, outputs=image_output)
|
66 |
|
67 |
+
demo.launch()
|