Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
from diffusers import StableDiffusionPipeline
|
3 |
import torch
|
4 |
-
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
12 |
-
|
13 |
-
# VGG16 model
|
14 |
vgg16_model_path = hf_hub_download(repo_id="sk2003/style_recognizer_vgg", filename="vgg16_model.pth")
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
vgg16.eval()
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
pipe.to(device)
|
22 |
|
23 |
# Prediction function for the VGG16 model
|
@@ -33,14 +42,9 @@ def predict_and_show(image):
|
|
33 |
outputs = vgg16(image_tensor)
|
34 |
_, predicted = torch.max(outputs.data, 1)
|
35 |
|
36 |
-
class_names = ["Classic", "Modern", "Vintage", "Glamour", "Scandinavian", "Rustic", "ArtDeco", "Industrial"]
|
37 |
predicted_label = class_names[predicted.item()]
|
38 |
|
39 |
-
plt.imshow(image)
|
40 |
-
plt.title(f'Predicted: {predicted_label}')
|
41 |
-
plt.axis('off')
|
42 |
-
plt.show()
|
43 |
-
|
44 |
return predicted_label
|
45 |
|
46 |
# Generation function for the Stable Diffusion model
|
|
|
1 |
import gradio as gr
|
2 |
from diffusers import StableDiffusionPipeline
|
3 |
import torch
|
4 |
+
from torchvision import models, transforms
|
5 |
from PIL import Image
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.optim as optim
|
9 |
|
10 |
+
# LoadING the VGG16 model
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
12 |
vgg16_model_path = hf_hub_download(repo_id="sk2003/style_recognizer_vgg", filename="vgg16_model.pth")
|
13 |
+
|
14 |
+
vgg16 = models.vgg16(pretrained=True)
|
15 |
+
for param in vgg16.parameters():
|
16 |
+
param.requires_grad = False
|
17 |
+
|
18 |
+
num_classes = 8
|
19 |
+
vgg16.classifier[6] = nn.Linear(vgg16.classifier[6].in_features, num_classes)
|
20 |
+
vgg16 = vgg16.to(device)
|
21 |
+
|
22 |
+
# Loading the saved state dict
|
23 |
+
checkpoint = torch.load(vgg16_model_path, map_location=device)
|
24 |
+
vgg16.load_state_dict(checkpoint['model_state_dict'])
|
25 |
vgg16.eval()
|
26 |
|
27 |
+
# Fine-tuned Stable Diffusion model from your Hugging Face repository
|
28 |
+
model_id = "sk2003/room-styler"
|
29 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
30 |
pipe.to(device)
|
31 |
|
32 |
# Prediction function for the VGG16 model
|
|
|
42 |
outputs = vgg16(image_tensor)
|
43 |
_, predicted = torch.max(outputs.data, 1)
|
44 |
|
45 |
+
class_names = ["Classic", "Modern", "Vintage", "Glamour", "Scandinavian", "Rustic", "ArtDeco", "Industrial"]
|
46 |
predicted_label = class_names[predicted.item()]
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
return predicted_label
|
49 |
|
50 |
# Generation function for the Stable Diffusion model
|