import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained( "Trelis/Llama-2-7b-chat-hf-sharded-bf16", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", low_cpu_mem_usage=True, ) tokenizer = AutoTokenizer.from_pretrained("Trelis/Llama-2-7b-chat-hf-sharded-bf16") def generate_text(input_text): input_ids = tokenizer.encode(input_text, return_tensors="pt") attention_mask = torch.ones(input_ids.shape) output = model.generate( input_ids, attention_mask=attention_mask, max_length=200, max_new_tokens=400, top_p = 0.7, top_k = 50, do_sample=True, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text) # Remove Prompt Echo from Generated Text cleaned_output_text = output_text.replace(input_text, "") return cleaned_output_text text_generation_interface = gr.Interface( fn=generate_text, inputs=[ gr.inputs.Textbox(label="Input Text"), ], outputs=gr.inputs.Textbox(label="Generated Text"), title="Falcon-7B Instruct", ).launch()