skf15963 commited on
Commit
ac969d4
1 Parent(s): a9d579c
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import time
4
+
5
+
6
+ def predict(x):
7
+ return np.fliplr(x)
8
+
9
+
10
+ def compress():
11
+ time.sleep(1)
12
+ return 'The model has been compressed successfully.'
13
+
14
+
15
+ with gr.Blocks() as demo:
16
+ with gr.Column():
17
+ gr.Radio(["Image classification", "Object detection", "Semantic segmentation"], label="Tasks"),
18
+ gr.Radio(["ResNet", "VGG", "MobileNet"], label="Models"),
19
+ gr.Radio(["Weight quantization","Knowledge distillation","Network pruning", "Neural Architecture Search"],
20
+ label="Compression methods"),
21
+ gr.Radio(["Jetson Nano"], label="Deployments")
22
+ compress_btn = gr.Button("compress")
23
+ output_compress = gr.Textbox(lines=1, label="Model Compression Results", visible=False)
24
+
25
+ with gr.Row():
26
+ Original_config = gr.Dataframe(headers=["#Params.(M)", "FLOPs(G)"], datatype=[
27
+ "str", "str"], row_count=1, value=[['63.8M','250G']], label="Original model config", visible=False)
28
+ Compressed_config = gr.Dataframe(headers=["#Params.(M)", "FLOPs(G)"], datatype=[
29
+ "str", "str"], row_count=1, value=[['34.6M','126G']],label="Compressed model config", visible=False)
30
+ with gr.Row():
31
+ input_predict = gr.Image(label="input")
32
+ output_predict = gr.Image(label="output")
33
+ predict_btn = gr.Button("predict")
34
+ state = gr.State()
35
+ compress_btn.click(fn=compress, inputs=None,
36
+ outputs=output_compress, api_name="compress")
37
+ compress_btn.click(lambda : (gr.Textbox.update(visible=True), "visible"), None, [output_compress, state])
38
+ output_compress.change(lambda: (Original_config.update(visible=True), "visible"), None, [Original_config, state])
39
+ output_compress.change(lambda: (Compressed_config.update(visible=True), "visible"), None, [Compressed_config, state])
40
+ predict_btn.click(fn=predict, inputs=input_predict,
41
+ outputs=output_predict, api_name="predict")
42
+
43
+ demo.launch(share=True)