Jayabalambika's picture
Update app.py
6723ff4
import gradio as gr
import matplotlib.pyplot as plt
# from skops import hub_utils
import time
import pickle
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LassoLarsIC
from sklearn.pipeline import make_pipeline
from sklearn.datasets import load_diabetes
def load_dataset():
X, y = load_diabetes(return_X_y=True, as_frame=True)
return X,y
def aic_pipeline(X,y):
lasso_lars_ic = make_pipeline(StandardScaler(), LassoLarsIC(criterion="aic")).fit(X, y)
return lasso_lars_ic
def zou_et_al_criterion_rescaling(criterion, n_samples, noise_variance):
"""Rescale the information criterion to follow the definition of Zou et al."""
return criterion - n_samples * np.log(2 * np.pi * noise_variance) - n_samples
def zou_et_all_aic(lasso_lars_ic):
aic_criterion = zou_et_al_criterion_rescaling(
lasso_lars_ic[-1].criterion_,
n_samples,
lasso_lars_ic[-1].noise_variance_,
)
index_alpha_path_aic = np.flatnonzero(
lasso_lars_ic[-1].alphas_ == lasso_lars_ic[-1].alpha_
)[0]
return index_alpha_path_aic, aic_criterion
def zou_et_all_bic(lasso_lars_ic):
lasso_lars_ic.set_params(lassolarsic__criterion="bic").fit(X, y)
bic_criterion = zou_et_al_criterion_rescaling(
lasso_lars_ic[-1].criterion_,
n_samples,
lasso_lars_ic[-1].noise_variance_,
)
index_alpha_path_bic = np.flatnonzero(
lasso_lars_ic[-1].alphas_ == lasso_lars_ic[-1].alpha_
)[0]
return index_alpha_path_bic, bic_criterion
def fn_assert_true():
assert index_alpha_path_bic == index_alpha_path_aic
def visualize_input_data(choice):
fig = plt.figure(1, facecolor="w", figsize=(5, 5))
if choice == "AIC criterion":
plt.clf ()
plt.plot(aic_criterion, color="tab:blue", marker="x", label="AIC criterion")
elif choice == "BIC criterion":
plt.clf ()
plt.plot(bic_criterion, color="tab:orange", marker="o", label="BIC criterion")
else:
plt.clf ()
plt.plot(aic_criterion, color="tab:blue", marker="*", label="AIC criterion")
plt.plot(bic_criterion, color="tab:orange", marker="o", label="BIC criterion")
plt.vlines(
index_alpha_path_bic,
aic_criterion.min(),
aic_criterion.max(),
color="black",
linestyle="--",
label="Selected alpha",
)
plt.legend()
plt.ylabel("Information criterion")
plt.xlabel("Lasso model sequence")
_ = plt.title("Lasso model selection via AIC and BIC")
return fig
title = " Lasso model selection via information criteria"
with gr.Blocks(title=title,theme=gr.themes.Default(font=[gr.themes.GoogleFont("Oxygen"), "Arial", "sans-serif"])) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(
"""
# Probabilistic model selection using Information Criterion.
This method in statistics is useful because they dont require a hold out set test set(cross validation set).
AIC and BIC are two ways of scoring a model based on its log-likelihood and complexity.
It is important to note that the optimization to find alpha with LassoLarsIC relies on the AIC or BIC criteria that are computed in-sample,
thus on the training set directly. This approach differs from the cross-validation procedure.
Also one of the drawbacks of these kinds of Probabilistic model is that same general statistic cannot be used across models.Instead a careful metric must be deviced
for each of the models seperately.The uncertainity of the model is not taken into account.
"""
)
gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars_ic.html#sphx-glr-auto-examples-linear-model-plot-lasso-lars-ic-py**")
##process
X,y = load_dataset()
lasso_lars_ic = aic_pipeline(X,y)
n_samples = X.shape[0]
index_alpha_path_aic, aic_criterion = zou_et_all_aic(lasso_lars_ic)
index_alpha_path_bic, bic_criterion = zou_et_all_bic(lasso_lars_ic)
fn_assert_true()
with gr.Tab("AIC BIC Criteria"):
radio = gr.Radio(
["AIC criterion", "BIC criterion", "Both"], label="What model selection criteria would you choose?"
)
# btn = gr.Button(value="Plot AIC BIC Criteria w Regularization")
# btn.click(visualize_input_data, outputs= gr.Plot(label='AIC BIC Criteria') )
radio.change(fn=visualize_input_data, inputs=radio, outputs=gr.Plot(label='AIC BIC Criteria'))
demo.launch()