File size: 5,890 Bytes
cf7215e
921471e
cf7215e
 
921471e
cf7215e
 
 
921471e
 
 
 
cf7215e
 
921471e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7215e
 
 
 
 
921471e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7215e
 
 
 
 
 
 
 
 
921471e
cf7215e
 
 
 
 
 
 
921471e
 
 
 
 
 
 
 
 
cf7215e
 
 
921471e
 
cf7215e
921471e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import plotly.graph_objects as go

from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification, make_blobs
from sklearn.neural_network import MLPClassifier

import gradio as gr

# =========================================================================

GRANULARITY = 0.2
MARGIN = 0.5
N_SAMPLES = 150
SEED = 1

datasets = {}
X, y = make_moons(n_samples=N_SAMPLES, noise=0.2, random_state=SEED)
X = StandardScaler().fit_transform(X)
datasets["Moons"] = (X.copy(), y.copy())

X, y = make_circles(n_samples=N_SAMPLES, noise=0.2, factor=0.5, random_state=SEED)
X = StandardScaler().fit_transform(X)
datasets["Circles"] = (X.copy(), y.copy())

X, y = make_blobs(n_samples=N_SAMPLES, n_features=2, centers=4, cluster_std=2, random_state=SEED)
X = StandardScaler().fit_transform(X)
y[y==2] = 0
y[y==3] = 1
datasets["Blobs"] = (X.copy(), y.copy())

X, y =  make_classification(n_samples=N_SAMPLES, n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, random_state=SEED)
X += 2 * np.random.uniform(size=X.shape)
X = StandardScaler().fit_transform(X)
datasets["Linear"] = (X.copy(), y.copy())

# =========================================================================

def get_figure_dict():
    figure_dict = dict(data=[], layout={}, frames=[])

    play_button = dict(args=[None, {"mode": "immediate", "fromcurrent": False, "frame": {"duration": 50}, "transition": {"duration": 50}}],
                   label="Play",
                   method="animate")

    pause_button = dict(args=[[None], {"mode": "immediate"}],
                    label="Stop",
                    method="animate")

    slider = dict(steps=[], active=0, currentvalue={"prefix": "Iteration: "})

    figure_dict["layout"] = dict(width=600, height=600, hovermode=False, margin=dict(l=40, r=40, t=40, b=40), 
                                      title=dict(text="Decision Surface", x=0.5),
                                      sliders=[slider],
                                      updatemenus=[dict(buttons=[play_button, pause_button], direction="left", pad={"t": 85}, type="buttons", x=0.6, y=-0.05)]
                                      )

    return figure_dict

def get_decision_surface(X, model):
    x_min, x_max = X[:, 0].min() - MARGIN, X[:, 0].max() + MARGIN
    y_min, y_max = X[:, 1].min() - MARGIN, X[:, 1].max() + MARGIN
    xrange = np.arange(x_min, x_max, GRANULARITY)
    yrange = np.arange(y_min, y_max, GRANULARITY)
    x, y = np.meshgrid(xrange, yrange)
    x = x.ravel(); y = y.ravel()
    z = model.predict_proba(np.column_stack([x, y]))[:, 1]
    return x, y, z
# =========================================================================

def create_plot(dataset, alpha, h1, h2, seed):
    X, y = datasets[dataset]

    model = MLPClassifier(alpha=alpha, max_iter=2000, learning_rate_init=0.01, hidden_layer_sizes=[h1, h2], random_state=seed)

    figure_dict = get_figure_dict()

    model.partial_fit(X, y, classes=[0, 1])
    xx, yy, zz = get_decision_surface(X, model)
    figure_dict["data"] = [go.Contour(x=xx, y=yy, z=zz, opacity=0.6, showscale=False,),
                        go.Scatter(x=X[:, 0], y=X[:, 1], mode="markers", marker_color=y, marker={"colorscale": "jet", "size": 8})]

    prev_loss = np.inf
    tol = 3e-4
    for i in range(100):
        for _ in range(3):
            model.partial_fit(X, y, classes=[0, 1])
        
        if prev_loss - model.loss_ <= tol: break
        prev_loss = model.loss_
        
        xx, yy, zz = get_decision_surface(X, model)
        figure_dict["frames"].append({"data": [go.Contour(x=xx, y=yy, z=zz, opacity=0.6, showscale=False)], "name": i})

        slider_step = {"args": [[i], {"mode": "immediate"}], "method": "animate", "label": i}
        figure_dict["layout"]["sliders"][0]["steps"].append(slider_step)

    fig = go.Figure(figure_dict)
    return fig

info = '''
# Effect of Regularization Parameter of Multilayer Perceptron

This example demonstrates the effect of varying the regularization parameter (alpha) of a multilayer perceptron on the binary classification of toy datasets, as represented by the decision surface of the classifier.

Higher values of alpha encourages smaller weights, thus making the model less prone to overfitting, while lower values may help against underfitting. Use the slider below to control the amount of regularization and observe how the decision surface changes with higher values.

The neural network is trained until the loss stops decreasing below a specific tolerance. The color of the decision surface represents the probability of observing the corresponding class.

Created by [@huabdul](https://huggingface.co/huabdul) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html).
'''
with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown(info)
            dd_dataset = gr.Dropdown(list(datasets.keys()), value="Moons", label="Dataset", interactive=True)
            with gr.Row():
                with gr.Column(min_width=100):
                    s_alpha = gr.Slider(0, 4, value=0.1, step=0.05, label="α (regularization parameter)")
                    s_seed = gr.Slider(1, 1000, value=1, step=1, label="Seed")
                with gr.Column(min_width=100):
                    s_h1 = gr.Slider(2, 20, value=10, step=1, label="Hidden layer 1 size")
                    s_h2 = gr.Slider(2, 20, value=10, step=1, label="Hidden layer 2 size")
            submit = gr.Button("Submit")
        with gr.Column():
            plot = gr.Plot(show_label=False)
    
    submit.click(create_plot, inputs=[dd_dataset, s_alpha, s_h1, s_h2, s_seed], outputs=[plot])
    demo.load(create_plot, inputs=[dd_dataset, s_alpha, s_h1, s_h2, s_seed], outputs=[plot])

demo.launch()