""" ========================================================== Gradio demo to Plot multi-class SGD on the iris dataset ========================================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. Created by Syed Affan <saffand03@gmail.com> """ import gradio as gr import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier from sklearn.inspection import DecisionBoundaryDisplay import matplotlib.cm def make_plot(alpha,max_iter,Standardize): # import some data to play with iris = datasets.load_iris() fig = plt.figure() # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize if Standardize: mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std clf = SGDClassifier(alpha=alpha, max_iter=max_iter).fit(X, y) accuracy = clf.score(X,y) acc = f'### The Accuracy on the entire dataset: {accuracy}' ax = plt.gca() DecisionBoundaryDisplay.from_estimator( clf, X, cmap=matplotlib.cm.Paired, ax=ax, response_method="predict", xlabel=iris.feature_names[0], ylabel=iris.feature_names[1], ) plt.axis("tight") # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter( X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=matplotlib.cm.Paired, edgecolor="black", s=20, ) plt.title("Decision surface of multi-class SGD") plt.axis("tight") # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() return fig,acc title = "Plot multi-class SGD on the iris dataset" model_card = f""" ## Description This interactive demo is based on the [Plot multi-class SGD on the iris dataset](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html#sphx-glr-auto-examples-linear-model-plot-sgd-iris-py) example from the popular [scikit-learn](https://scikit-learn.org/stable/) library, which is a widely-used library for machine learning in Python. This demo plots the decision surface of multi-class SGD on the iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. You can play with the following hyperparameters: `alpha` is a constant that multiplies the regularization term. The higher the value, the stronger the regularization. `max_iter` is the maximum number of passes over the training data (aka epochs). `Standardise` centers the dataset ## Dataset [Iris Dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set) ## Model currentmodule: [sklearn.linear_model](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model) class:`SGDClassifier` is the estimator used in this example. """ with gr.Blocks(title=title) as demo: gr.Markdown(''' <div> <h1 style='text-align: center'>Plot multi-class SGD on iris dataset</h1> </div> ''') gr.Markdown(model_card) gr.Markdown("Author: <a href=\"https://huggingface.co/sulpha\">sulpha</a>") d0 = gr.Slider(0.001,5,step=0.001,value=0.001,label='alpha') d1 = gr.Slider(1,1001,step=10,value=100,label='max_iter') d2 = gr.Checkbox(value=True,label='Standardize') btn =gr.Button(value='Submit') btn.click(make_plot,inputs=[d0,d1,d2],outputs=[gr.Plot(),gr.Markdown()]) demo.launch()