File size: 6,203 Bytes
3338479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b46f888
3338479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import numpy as np
import matplotlib.pyplot as plt
from threading import Thread
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.datasets import make_blobs, make_circles, make_moons
import gradio as gr
import math
from functools import partial
import time

import matplotlib

from sklearn import svm
from sklearn.datasets import make_moons, make_blobs
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
from sklearn.linear_model import SGDOneClassSVM
from sklearn.kernel_approximation import Nystroem
from sklearn.pipeline import make_pipeline


### DATASETS

def normalize(X):
    return StandardScaler().fit_transform(X)

# Example settings
n_samples = 300
outliers_fraction = 0.15
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers

#### MODELS

def get_groundtruth_model(X, labels):
    # dummy model to show true label distribution
    class Dummy:
        def __init__(self, y):
            self.labels_ = labels

    return Dummy(labels)
############
# Define datasets
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
DATA_MAPPING = {
    "Central Blob":make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
    "Two Blobs": make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
    "Blob with Noise": make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
    "Moons": 4.0
    * (
        make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
        - np.array([0.5, 0.25])
    ),
    "Noise": 14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
}


NAME_CLF_MAPPING = {"Robust covariance": EllipticEnvelope(contamination=outliers_fraction),
    "One-Class SVM": svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1),
    "One-Class SVM (SGD)":make_pipeline(
            Nystroem(gamma=0.1, random_state=42, n_components=150),
            SGDOneClassSVM(
                nu=outliers_fraction,
                shuffle=True,
                fit_intercept=True,
                random_state=42,
                tol=1e-6,
            ),
        ),
        "Isolation Forest": IsolationForest(contamination=outliers_fraction, random_state=42),
        "Local Outlier Factor": LocalOutlierFactor(n_neighbors=35, contamination=outliers_fraction),
}



###########################################################

# Compare given classifiers under given settings

DATASETS = [
    make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
    make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
    make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
    4.0
    * (
        make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
        - np.array([0.5, 0.25])
    ),
    14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
]
########################################################


###########

#### PLOT
FIGSIZE = 7,7
figure = plt.figure(figsize=(25, 10))
i = 1




def train_models(selected_data, clf_name):
    xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150))
    clf = NAME_CLF_MAPPING[clf_name]
    plt.figure(figsize=(len(NAME_CLF_MAPPING) * 2 + 4, 12.5))


    plot_num = 1
    rng = np.random.RandomState(42)
    X = DATA_MAPPING[selected_data]
    X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0)
    
    t0 = time.time()
    clf.fit(X)
    t1 = time.time()
    # fit the data and tag outliers
    if clf_name == "Local Outlier Factor":
        y_pred = clf.fit_predict(X)
    else:
        y_pred = clf.fit(X).predict(X)

    # plot the levels lines and the points
    if clf_name != "Local Outlier Factor":  # LOF does not implement predict
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="black")

    colors = np.array(["#377eb8", "#ff7f00"])
    plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2])

    plt.xlim(-7, 7)
    plt.ylim(-7, 7)
    plt.xticks(())
    plt.yticks(())
    plt.text(
        0.99,
        0.01,
        ("%.2fs" % (t1 - t0)).lstrip("0"),
        transform=plt.gca().transAxes,
        size=15,
        horizontalalignment="right",
    )
    plot_num += 1

    return plt



description = "Learn how different anomaly detection algorithms perform in different datasets."

def iter_grid(n_rows, n_cols):
    # create a grid using gradio Block
    for _ in range(n_rows):
        with gr.Row():
            for _ in range(n_cols):
                with gr.Column():
                    yield

title = "🕵️‍♀️ compare anomaly detection algorithms 🕵️‍♂️"
with gr.Blocks() as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description)

    input_models = list(NAME_CLF_MAPPING)
    input_data = gr.Radio(
        choices=["Central Blob", "Two Blobs", "Blob with Noise", "Moons", "Noise"],
        value="Moons"
    )
    counter = 0


    for _ in iter_grid(5, 5):
        if counter >= len(input_models):
            break

        input_model = input_models[counter]
        plot = gr.Plot(label=input_model)
        fn = partial(train_models, clf_name=input_model)
        input_data.change(fn=fn, inputs=[input_data], outputs=plot)
        counter += 1

demo.launch(enable_queue=True, debug=True)