Spaces:
Running
Running
File size: 6,203 Bytes
3338479 b46f888 3338479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import numpy as np
import matplotlib.pyplot as plt
from threading import Thread
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.datasets import make_blobs, make_circles, make_moons
import gradio as gr
import math
from functools import partial
import time
import matplotlib
from sklearn import svm
from sklearn.datasets import make_moons, make_blobs
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
from sklearn.linear_model import SGDOneClassSVM
from sklearn.kernel_approximation import Nystroem
from sklearn.pipeline import make_pipeline
### DATASETS
def normalize(X):
return StandardScaler().fit_transform(X)
# Example settings
n_samples = 300
outliers_fraction = 0.15
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers
#### MODELS
def get_groundtruth_model(X, labels):
# dummy model to show true label distribution
class Dummy:
def __init__(self, y):
self.labels_ = labels
return Dummy(labels)
############
# Define datasets
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
DATA_MAPPING = {
"Central Blob":make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
"Two Blobs": make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
"Blob with Noise": make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
"Moons": 4.0
* (
make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
- np.array([0.5, 0.25])
),
"Noise": 14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
}
NAME_CLF_MAPPING = {"Robust covariance": EllipticEnvelope(contamination=outliers_fraction),
"One-Class SVM": svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1),
"One-Class SVM (SGD)":make_pipeline(
Nystroem(gamma=0.1, random_state=42, n_components=150),
SGDOneClassSVM(
nu=outliers_fraction,
shuffle=True,
fit_intercept=True,
random_state=42,
tol=1e-6,
),
),
"Isolation Forest": IsolationForest(contamination=outliers_fraction, random_state=42),
"Local Outlier Factor": LocalOutlierFactor(n_neighbors=35, contamination=outliers_fraction),
}
###########################################################
# Compare given classifiers under given settings
DATASETS = [
make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
4.0
* (
make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
- np.array([0.5, 0.25])
),
14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
]
########################################################
###########
#### PLOT
FIGSIZE = 7,7
figure = plt.figure(figsize=(25, 10))
i = 1
def train_models(selected_data, clf_name):
xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150))
clf = NAME_CLF_MAPPING[clf_name]
plt.figure(figsize=(len(NAME_CLF_MAPPING) * 2 + 4, 12.5))
plot_num = 1
rng = np.random.RandomState(42)
X = DATA_MAPPING[selected_data]
X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0)
t0 = time.time()
clf.fit(X)
t1 = time.time()
# fit the data and tag outliers
if clf_name == "Local Outlier Factor":
y_pred = clf.fit_predict(X)
else:
y_pred = clf.fit(X).predict(X)
# plot the levels lines and the points
if clf_name != "Local Outlier Factor": # LOF does not implement predict
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="black")
colors = np.array(["#377eb8", "#ff7f00"])
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2])
plt.xlim(-7, 7)
plt.ylim(-7, 7)
plt.xticks(())
plt.yticks(())
plt.text(
0.99,
0.01,
("%.2fs" % (t1 - t0)).lstrip("0"),
transform=plt.gca().transAxes,
size=15,
horizontalalignment="right",
)
plot_num += 1
return plt
description = "Learn how different anomaly detection algorithms perform in different datasets."
def iter_grid(n_rows, n_cols):
# create a grid using gradio Block
for _ in range(n_rows):
with gr.Row():
for _ in range(n_cols):
with gr.Column():
yield
title = "🕵️♀️ compare anomaly detection algorithms 🕵️♂️"
with gr.Blocks() as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description)
input_models = list(NAME_CLF_MAPPING)
input_data = gr.Radio(
choices=["Central Blob", "Two Blobs", "Blob with Noise", "Moons", "Noise"],
value="Moons"
)
counter = 0
for _ in iter_grid(5, 5):
if counter >= len(input_models):
break
input_model = input_models[counter]
plot = gr.Plot(label=input_model)
fn = partial(train_models, clf_name=input_model)
input_data.change(fn=fn, inputs=[input_data], outputs=plot)
counter += 1
demo.launch(enable_queue=True, debug=True)
|