Create the lr example
Browse files- app.py +90 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
from sklearn import datasets, linear_model
|
6 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
7 |
+
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
FIGSIZE = (10,10)
|
11 |
+
|
12 |
+
feature_names = ["age", "body-mass index (BMI)", "blood pressure",
|
13 |
+
"total serum cholesterol", "low-density lipoproteins (LDL)",
|
14 |
+
"high-density lipoproteins (HDL)", "total cholesterol / HDL",
|
15 |
+
"log of serum triglycerides level (possibly)","blood sugar level"]
|
16 |
+
|
17 |
+
def create_dataset(feature_id=2):
|
18 |
+
# Load the diabetes dataset
|
19 |
+
diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
|
20 |
+
|
21 |
+
# Use only one feature
|
22 |
+
diabetes_X = diabetes_X[:, np.newaxis, feature_id]
|
23 |
+
|
24 |
+
# Split the data into training/testing sets
|
25 |
+
diabetes_X_train = diabetes_X[:-20]
|
26 |
+
diabetes_X_test = diabetes_X[-20:]
|
27 |
+
|
28 |
+
# Split the targets into training/testing sets
|
29 |
+
diabetes_y_train = diabetes_y[:-20]
|
30 |
+
diabetes_y_test = diabetes_y[-20:]
|
31 |
+
|
32 |
+
return diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test
|
33 |
+
|
34 |
+
def train_model(input_data):
|
35 |
+
|
36 |
+
# We reomved the sex variable
|
37 |
+
if input_data == 'age':
|
38 |
+
feature_id = 0
|
39 |
+
else:
|
40 |
+
feature_id = feature_names.index(input_data) + 1
|
41 |
+
|
42 |
+
diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test = create_dataset(feature_id)
|
43 |
+
|
44 |
+
|
45 |
+
# Create linear regression object
|
46 |
+
regr = linear_model.LinearRegression()
|
47 |
+
|
48 |
+
# Train the model using the training sets
|
49 |
+
regr.fit(diabetes_X_train, diabetes_y_train)
|
50 |
+
|
51 |
+
# Make predictions using the testing set
|
52 |
+
diabetes_y_pred = regr.predict(diabetes_X_test)
|
53 |
+
|
54 |
+
mse = mean_squared_error(diabetes_y_test, diabetes_y_pred)
|
55 |
+
r2 = r2_score(diabetes_y_test, diabetes_y_pred)
|
56 |
+
|
57 |
+
# Plot outputs
|
58 |
+
fig = plt.figure(figsize=FIGSIZE)
|
59 |
+
|
60 |
+
plt.title(input_data)
|
61 |
+
plt.scatter(diabetes_X_test, diabetes_y_test, color="black")
|
62 |
+
plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3)
|
63 |
+
|
64 |
+
plt.xticks(())
|
65 |
+
plt.yticks(())
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
return fig, regr.coef_, mse, r2
|
70 |
+
|
71 |
+
title = "Linear Regression Example"
|
72 |
+
description = "The example shows how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset"
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
gr.Markdown(f"## {title}")
|
75 |
+
gr.Markdown(description)
|
76 |
+
|
77 |
+
with gr.Column():
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
plot = gr.Plot(label="Feature")
|
81 |
+
with gr.Column():
|
82 |
+
input_data = gr.Dropdown(choices=feature_names, label="Feature", value="body-mass index")
|
83 |
+
coef = gr.Textbox(label="Coefficients")
|
84 |
+
mse = gr.Textbox(label="MSE")
|
85 |
+
r2 = gr.Textbox(label="R2")
|
86 |
+
|
87 |
+
input_data.change(fn=train_model, inputs=[input_data], outputs=[plot, coef, mse, r2], queue=False)
|
88 |
+
|
89 |
+
|
90 |
+
demo.launch(enable_queue=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
|