File size: 5,586 Bytes
baaa327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61bb816
 
 
 
 
 
 
 
 
 
 
 
 
baaa327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor

import gradio as gr

matplotlib.use('agg') 

# Generate data
def f(x):
    x = x.ravel()

    return np.exp(-(x**2)) + 1.5 * np.exp(-((x - 2) ** 2))


def generate(n_samples, noise, n_repeat=1):
    X = np.random.rand(n_samples) * 10 - 5
    X = np.sort(X)

    if n_repeat == 1:
        y = f(X) + np.random.normal(0.0, noise, n_samples)
    else:
        y = np.zeros((n_samples, n_repeat))

        for i in range(n_repeat):
            y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples)

    X = X.reshape((n_samples, 1))

    return X, y

def train_model(n_train, noise):
    # Settings
    n_repeat = 50  # Number of iterations for computing expectations
    # n_train = 50  # Size of the training set
    n_test = 1000  # Size of the test set
    # noise = noise  # Standard deviation of the noise
    np.random.seed(0)

    # Change this for exploring the bias-variance decomposition of other
    # estimators. This should work well for estimators with high variance (e.g.,
    # decision trees or KNN), but poorly for estimators with low variance (e.g.,
    # linear models).
    estimators = [
        ("Tree", DecisionTreeRegressor()),
        ("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor())),
    ]

    n_estimators = len(estimators)


    X_train = []
    y_train = []

    for i in range(n_repeat):
        X, y = generate(n_samples=n_train, noise=noise)
        X_train.append(X)
        y_train.append(y)

    X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat)

    fig = plt.figure(figsize=(10, 8))

    out_str = ""
    # Loop over estimators to compare
    for n, (name, estimator) in enumerate(estimators):
        # Compute predictions
        y_predict = np.zeros((n_test, n_repeat))

        for i in range(n_repeat):
            estimator.fit(X_train[i], y_train[i])
            y_predict[:, i] = estimator.predict(X_test)

        # Bias^2 + Variance + Noise decomposition of the mean squared error
        y_error = np.zeros(n_test)

        for i in range(n_repeat):
            for j in range(n_repeat):
                y_error += (y_test[:, j] - y_predict[:, i]) ** 2

        y_error /= n_repeat * n_repeat

        y_noise = np.var(y_test, axis=1)
        y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2
        y_var = np.var(y_predict, axis=1)

        
        out_str += f"{name}: {np.mean(y_error):.4f} (error) = {np.mean(y_bias):.4f} (bias^2) + {np.mean(y_var):.4f} (var) + {np.mean(y_noise):.4f} (noise)\n"
        

        # Plot figures
        plt.subplot(2, n_estimators, n + 1)
        plt.plot(X_test, f(X_test), "b", label="$f(x)$")
        plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$")

        for i in range(n_repeat):
            if i == 0:
                plt.plot(X_test, y_predict[:, i], "r", label=r"$\^y(x)$")
            else:
                plt.plot(X_test, y_predict[:, i], "r", alpha=0.05)

        plt.plot(X_test, np.mean(y_predict, axis=1), "c", label=r"$\mathbb{E}_{LS} \^y(x)$")

        plt.xlim([-5, 5])
        plt.title(name)

        if n == n_estimators - 1:
            plt.legend(loc=(1.1, 0.5))

        plt.subplot(2, n_estimators, n_estimators + n + 1)
        plt.plot(X_test, y_error, "r", label="$error(x)$")
        plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"),
        plt.plot(X_test, y_var, "g", label="$variance(x)$"),
        plt.plot(X_test, y_noise, "c", label="$noise(x)$")

        plt.xlim([-5, 5])
        plt.ylim([0, noise])

        if n == n_estimators - 1:
            plt.legend(loc=(1.1, 0.5))

    plt.subplots_adjust(right=0.75)
    
    return fig, out_str

title = "Single estimator versus bagging: bias-variance decomposition ⚖️"
description = """This example illustrates and compares the bias-variance decomposition of the \
                expected mean squared error of a single estimator (Decision Tree Regressor) \
                against a bagging ensemble of Tree Regressors. \
                
                The dataset used for this demo is a one-dimensional synthetic dataset generated \
                for a regression problem. In the top two figures, the blue line represents the true \
                function and the blue dots represent the training data that are obtained by adding some \
                random noise (user selected). The prediction of the models is represented by the red line. \
                The average prediction of each estimator is presented in cyan.

                In the two lower figures, we can see the decomposition of the expected mean squared error \
                (red) into the bias (blue) and variance (green), as well as the noise part of the error (cyan).
            """
with gr.Blocks() as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description)

    num_samples = gr.Slider(minimum=50, maximum=200, step=50, value=50, label="Number of samples")
    noise = gr.Slider(minimum=0.05, maximum=0.2, step=0.05, value=0.1, label="Noise")

    with gr.Row():
        with gr.Row():
            with gr.Column(scale=2):
                plot = gr.Plot()
            with gr.Column(scale=1):
                results = gr.Textbox(label="Results")
        
    num_samples.change(fn=train_model, inputs=[num_samples, noise], outputs=[plot, results])
    noise.change(fn=train_model, inputs=[num_samples, noise], outputs=[plot, results])
    
demo.launch(enable_queue=True)