marik0's picture
Created the demo
baaa327
raw
history blame
4.76 kB
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
import gradio as gr
matplotlib.use('agg')
# Generate data
def f(x):
x = x.ravel()
return np.exp(-(x**2)) + 1.5 * np.exp(-((x - 2) ** 2))
def generate(n_samples, noise, n_repeat=1):
X = np.random.rand(n_samples) * 10 - 5
X = np.sort(X)
if n_repeat == 1:
y = f(X) + np.random.normal(0.0, noise, n_samples)
else:
y = np.zeros((n_samples, n_repeat))
for i in range(n_repeat):
y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples)
X = X.reshape((n_samples, 1))
return X, y
def train_model(n_train, noise):
# Settings
n_repeat = 50 # Number of iterations for computing expectations
# n_train = 50 # Size of the training set
n_test = 1000 # Size of the test set
# noise = noise # Standard deviation of the noise
np.random.seed(0)
# Change this for exploring the bias-variance decomposition of other
# estimators. This should work well for estimators with high variance (e.g.,
# decision trees or KNN), but poorly for estimators with low variance (e.g.,
# linear models).
estimators = [
("Tree", DecisionTreeRegressor()),
("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor())),
]
n_estimators = len(estimators)
X_train = []
y_train = []
for i in range(n_repeat):
X, y = generate(n_samples=n_train, noise=noise)
X_train.append(X)
y_train.append(y)
X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat)
fig = plt.figure(figsize=(10, 8))
out_str = ""
# Loop over estimators to compare
for n, (name, estimator) in enumerate(estimators):
# Compute predictions
y_predict = np.zeros((n_test, n_repeat))
for i in range(n_repeat):
estimator.fit(X_train[i], y_train[i])
y_predict[:, i] = estimator.predict(X_test)
# Bias^2 + Variance + Noise decomposition of the mean squared error
y_error = np.zeros(n_test)
for i in range(n_repeat):
for j in range(n_repeat):
y_error += (y_test[:, j] - y_predict[:, i]) ** 2
y_error /= n_repeat * n_repeat
y_noise = np.var(y_test, axis=1)
y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2
y_var = np.var(y_predict, axis=1)
out_str += f"{name}: {np.mean(y_error):.4f} (error) = {np.mean(y_bias):.4f} (bias^2) + {np.mean(y_var):.4f} (var) + {np.mean(y_noise):.4f} (noise)\n"
# Plot figures
plt.subplot(2, n_estimators, n + 1)
plt.plot(X_test, f(X_test), "b", label="$f(x)$")
plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$")
for i in range(n_repeat):
if i == 0:
plt.plot(X_test, y_predict[:, i], "r", label=r"$\^y(x)$")
else:
plt.plot(X_test, y_predict[:, i], "r", alpha=0.05)
plt.plot(X_test, np.mean(y_predict, axis=1), "c", label=r"$\mathbb{E}_{LS} \^y(x)$")
plt.xlim([-5, 5])
plt.title(name)
if n == n_estimators - 1:
plt.legend(loc=(1.1, 0.5))
plt.subplot(2, n_estimators, n_estimators + n + 1)
plt.plot(X_test, y_error, "r", label="$error(x)$")
plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"),
plt.plot(X_test, y_var, "g", label="$variance(x)$"),
plt.plot(X_test, y_noise, "c", label="$noise(x)$")
plt.xlim([-5, 5])
plt.ylim([0, noise])
if n == n_estimators - 1:
plt.legend(loc=(1.1, 0.5))
plt.subplots_adjust(right=0.75)
return fig, out_str
title = "Single estimator versus bagging: bias-variance decomposition ⚖️"
description = "This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. "
with gr.Blocks() as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description)
num_samples = gr.Slider(minimum=50, maximum=200, step=50, value=50, label="Number of samples")
noise = gr.Slider(minimum=0.05, maximum=0.2, step=0.05, value=0.1, label="Noise")
with gr.Row():
with gr.Row():
with gr.Column(scale=2):
plot = gr.Plot()
with gr.Column(scale=1):
results = gr.Textbox(label="Results")
num_samples.change(fn=train_model, inputs=[num_samples, noise], outputs=[plot, results])
noise.change(fn=train_model, inputs=[num_samples, noise], outputs=[plot, results])
demo.launch(enable_queue=True)