Spaces:
Runtime error
Runtime error
Commit
·
5a359a3
1
Parent(s):
d691ba0
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Skill Transformation Journey.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/11XAXUP2fzy553V9v0x-gxJXcXL3uHJcw
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
11 |
+
# %pip install openai
|
12 |
+
|
13 |
+
# Commented out IPython magic to ensure Python compatibility.
|
14 |
+
# %pip install gradio
|
15 |
+
|
16 |
+
import gradio as gr
|
17 |
+
import re
|
18 |
+
import openai
|
19 |
+
from openai import OpenAI
|
20 |
+
import pandas as pd
|
21 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
22 |
+
from sklearn.metrics.pairwise import linear_kernel
|
23 |
+
|
24 |
+
client = OpenAI(
|
25 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
26 |
+
api_key="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",
|
27 |
+
)
|
28 |
+
|
29 |
+
# Specify the sheet name in the Excel file
|
30 |
+
excel_file_path = "/content/drive/MyDrive/Skill Transformation Journey/AI Integrations in SWAYAM_V1.0.xlsx"
|
31 |
+
sheet_name = "Shortlisted Courses" # Replace with the actual sheet name
|
32 |
+
|
33 |
+
# Read the Excel file into a Pandas DataFrame
|
34 |
+
courses_df = pd.read_excel(excel_file_path, sheet_name=sheet_name)
|
35 |
+
|
36 |
+
# Function to recommend courses based on user input using GPT and TF-IDF
|
37 |
+
def recommend_courses(user_skill, ed_qual):#, #primary_skill_1):
|
38 |
+
# Combine user's input into a single string for TF-IDF
|
39 |
+
user_input = f"{user_skill} {ed_qual}"
|
40 |
+
|
41 |
+
# Use TF-IDF and cosine similarity for initial course recommendations
|
42 |
+
user_vector = tfidf_vectorizer.transform([user_input])
|
43 |
+
cosine_similarities = linear_kernel(user_vector, tfidf_matrix)
|
44 |
+
|
45 |
+
# Get initial course recommendations based on similarity scores
|
46 |
+
recommendations = courses_df.copy()
|
47 |
+
recommendations['Similarity'] = cosine_similarities[0]
|
48 |
+
|
49 |
+
# Sort by similarity and get top recommendations
|
50 |
+
top_recommendations = recommendations.sort_values(by='Similarity', ascending=False).head(5)
|
51 |
+
|
52 |
+
# Generate a text summary of the initial recommendations
|
53 |
+
initial_recommendations_text = top_recommendations[['Course Name', 'Course Link']].to_string(index=False)
|
54 |
+
|
55 |
+
# Combine user input and initial recommendations for GPT prompt
|
56 |
+
gpt_prompt = f"Refine the following course recommendations based on user input:\n\n"\
|
57 |
+
f"{user_input}\n\n"\
|
58 |
+
f"Initial Recommendations:\n\n"\
|
59 |
+
f"{initial_recommendations_text}"
|
60 |
+
|
61 |
+
# Use GPT to generate refined recommendations
|
62 |
+
gpt_response = client.chat.completions.create(
|
63 |
+
messages=[
|
64 |
+
{
|
65 |
+
"role": "system",
|
66 |
+
"content": gpt_prompt,
|
67 |
+
}
|
68 |
+
],
|
69 |
+
model="gpt-3.5-turbo",
|
70 |
+
max_tokens=1000
|
71 |
+
)
|
72 |
+
|
73 |
+
# Assume GPT generates HTML-formatted final recommendations
|
74 |
+
gpt_content = gpt_response.choices[0].message.content #gpt_response['choices'][0]['text']
|
75 |
+
|
76 |
+
# Assume GPT generates HTML-formatted final recommendations
|
77 |
+
final_recommendations_html = html_coversion(gpt_content)
|
78 |
+
|
79 |
+
return final_recommendations_html
|
80 |
+
|
81 |
+
# Create a TF-IDF vectorizer
|
82 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
83 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(courses_df['Course Name'].fillna(''))
|
84 |
+
|
85 |
+
user_skill = "psychology"
|
86 |
+
|
87 |
+
ed_qual = "B.Tech/B.Sc"
|
88 |
+
|
89 |
+
html = recommend_courses(user_skill, ed_qual)
|
90 |
+
|
91 |
+
html
|
92 |
+
|
93 |
+
def html_coversion(gpt_content):
|
94 |
+
|
95 |
+
# Provided data in text format
|
96 |
+
data_text = gpt_content
|
97 |
+
|
98 |
+
# Extract course details using a modified regular expression
|
99 |
+
courses = re.findall(r'(\d+)\. (.*?):\n\s*- Course Link: \[([^\]]+)\]\(([^)]+)\)\n\s*- Description: ([^\n]+)', data_text)
|
100 |
+
|
101 |
+
# Process each tuple to remove the second occurrence of the course link
|
102 |
+
processed_courses = []
|
103 |
+
for course_tuple in courses:
|
104 |
+
# Find the index of the second occurrence of the course link
|
105 |
+
index_of_second_occurrence = course_tuple.index(course_tuple[2], course_tuple.index(course_tuple[2]) + 1)
|
106 |
+
# Remove the second occurrence of the course link from the tuple
|
107 |
+
processed_tuple = course_tuple[:index_of_second_occurrence] + course_tuple[index_of_second_occurrence + 1:]
|
108 |
+
processed_courses.append(processed_tuple)
|
109 |
+
|
110 |
+
# Convert the processed list of tuples into a DataFrame
|
111 |
+
df = pd.DataFrame(processed_courses, columns=['Sr No', 'Course Name', 'Course Link', 'Description'])
|
112 |
+
|
113 |
+
# Convert the DataFrame to an HTML table
|
114 |
+
html_table = df.to_html(index=False, escape=False)
|
115 |
+
|
116 |
+
# Print or save the HTML table
|
117 |
+
return html_table
|
118 |
+
|
119 |
+
# Gradio Interface with dynamically generated dropdown options
|
120 |
+
iface = gr.Interface(
|
121 |
+
fn=recommend_courses,
|
122 |
+
inputs=[
|
123 |
+
gr.Textbox("text", label="Enter expected skill"),
|
124 |
+
gr.Dropdown(["B.Tech/B.Sc", "M.Tech/M.Sc", "Management"], label="Highest Educational Qualification"),
|
125 |
+
],
|
126 |
+
outputs="html",
|
127 |
+
live=True
|
128 |
+
)
|
129 |
+
|
130 |
+
# Launch the Gradio interface and save the output to an HTML file
|
131 |
+
iface.launch(share=True)
|
132 |
+
|