File size: 4,550 Bytes
c4a0a85
 
 
 
 
 
 
 
 
 
afb254c
c4a0a85
 
 
c9624f8
c4a0a85
 
 
 
 
 
c9624f8
c4a0a85
 
 
 
 
 
 
 
 
c9624f8
c4a0a85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9624f8
c4a0a85
 
 
 
 
 
afb254c
42986a1
afb254c
c4a0a85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42986a1
c4a0a85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42986a1
c4a0a85
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import spaces
import gradio as gr
import time
import torch

from PIL import Image
from segment_utils import(
    segment_image,
    restore_result,
)
from enhance_utils import enhance_image
from diffusers import (
    StableDiffusionInstructPix2PixPipeline,
    EulerAncestralDiscreteScheduler,
    DDIMScheduler,
)

BASE_MODEL = "timbrooks/instruct-pix2pix"

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

DEFAULT_EDIT_PROMPT = "hair to linen-blonde-hair"

DEFAULT_CATEGORY = "hair"

basepipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
    BASE_MODEL,
    torch_dtype=torch.float16,
    use_safetensors=True,
)

basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config)

basepipeline = basepipeline.to(DEVICE)

basepipeline.enable_model_cpu_offload()

@spaces.GPU(duration=15)
def image_to_image(
    input_image: Image,
    edit_prompt: str,
    seed: int,
    num_steps: int,
    guidance_scale: float,
    image_guidance_scale: float,
):
    run_task_time = 0
    time_cost_str = ''
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    generator = torch.Generator(device=DEVICE).manual_seed(seed)
    generated_image = basepipeline(
        generator=generator,
        prompt=edit_prompt,
        image=input_image,
        guidance_scale=guidance_scale,
        image_guidance_scale=image_guidance_scale,
        num_inference_steps=num_steps,
    ).images[0]
    
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
    enhanced_image = enhance_image(generated_image, False)
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
    return enhanced_image, time_cost_str

def get_time_cost(run_task_time, time_cost_str):
    now_time = int(time.time()*1000)
    if run_task_time == 0:
        time_cost_str = 'start'
    else:
        if time_cost_str != '': 
            time_cost_str += f'-->'
        time_cost_str += f'{now_time - run_task_time}'
    run_task_time = now_time
    return run_task_time, time_cost_str

def create_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
                generate_size = gr.Number(label="Generate Size", value=512)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
                guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
            with gr.Column():
                image_guidance_scale = gr.Slider(minimum=0, maximum=30, value=1.5, step=0.1, label="Image Guidance Scale")
                with gr.Accordion("Advanced Options", open=False):
                    mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
                    mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
                    seed = gr.Number(label="Seed", value=8)
                    category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
                download_path = gr.File(label="Download the output image", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
                generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
        
        g_btn.click(
            fn=segment_image,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, image_guidance_scale],
            outputs=[generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, generated_image],
            outputs=[restored_image, download_path],
        )

    return demo