zhiweili commited on
Commit
1d517a9
1 Parent(s): e00097c

fix adapter error

Browse files
Files changed (1) hide show
  1. inversion_run_adapter.py +5 -12
inversion_run_adapter.py CHANGED
@@ -92,18 +92,12 @@ adapters = MultiAdapter(
92
  )
93
  adapters = adapters.to(torch.float16)
94
 
95
- adapters = T2IAdapter.from_pretrained(
96
- "TencentARC/t2i-adapter-lineart-sdxl-1.0",
97
- torch_dtype=torch.float16,
98
- varient="fp16",
99
- ),
100
-
101
  pipeline = DiffusionPipeline.from_pretrained(
102
  BASE_MODEL,
103
  torch_dtype=torch.float16,
104
  variant="fp16",
105
  use_safetensors=True,
106
- # vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
107
  adapter=adapters,
108
  custom_pipeline="./pipelines/pipeline_sdxl_adapter_img2img.py",
109
  )
@@ -170,13 +164,12 @@ def run(
170
  print(f"-------->num_steps_inversion: {num_steps_inversion} num_steps_actual: {num_steps_actual} step_start: {config.step_start}")
171
  print(f"-------->timesteps len: {len(timesteps)} max_norm_zs len: {len(config.max_norm_zs)}")
172
  lineart_image = lineart_detector(input_image, detect_resolution=int(generate_size * lineart_detect), image_resolution=generate_size)
173
- # canny_image = canndy_detector(input_image, detect_resolution=int(generate_size * canny_detect), image_resolution=generate_size)
174
  # pidinet_image = pidinet_detector(input_image, detect_resolution=512, image_resolution=generate_size, apply_filter=True)
175
  # depth_image = midas_detector(input_image, detect_resolution=512, image_resolution=generate_size)
176
- # cond_image = [lineart_image, canny_image]
177
- # conditioning_scale = [lineart_scale, canny_scale]
178
- cond_image = lineart_image
179
- conditioning_scale = lineart_scale
180
  pipeline.__call__ = partial(
181
  pipeline.__call__,
182
  num_inference_steps=num_steps_inversion,
 
92
  )
93
  adapters = adapters.to(torch.float16)
94
 
 
 
 
 
 
 
95
  pipeline = DiffusionPipeline.from_pretrained(
96
  BASE_MODEL,
97
  torch_dtype=torch.float16,
98
  variant="fp16",
99
  use_safetensors=True,
100
+ vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
101
  adapter=adapters,
102
  custom_pipeline="./pipelines/pipeline_sdxl_adapter_img2img.py",
103
  )
 
164
  print(f"-------->num_steps_inversion: {num_steps_inversion} num_steps_actual: {num_steps_actual} step_start: {config.step_start}")
165
  print(f"-------->timesteps len: {len(timesteps)} max_norm_zs len: {len(config.max_norm_zs)}")
166
  lineart_image = lineart_detector(input_image, detect_resolution=int(generate_size * lineart_detect), image_resolution=generate_size)
167
+ canny_image = canndy_detector(input_image, detect_resolution=int(generate_size * canny_detect), image_resolution=generate_size)
168
  # pidinet_image = pidinet_detector(input_image, detect_resolution=512, image_resolution=generate_size, apply_filter=True)
169
  # depth_image = midas_detector(input_image, detect_resolution=512, image_resolution=generate_size)
170
+ cond_image = [lineart_image, canny_image]
171
+ conditioning_scale = [lineart_scale, canny_scale]
172
+
 
173
  pipeline.__call__ = partial(
174
  pipeline.__call__,
175
  num_inference_steps=num_steps_inversion,