import pickle import gradio as gr from datasets import load_dataset from transformers import AutoModel, AutoFeatureExtractor # Only runs once when the script is first run. with open("slugs_index_1024_cosine.pickle", "rb") as handle: index = pickle.load(handle) # Load model for computing embeddings. feature_extractor = AutoFeatureExtractor.from_pretrained("sasha/autotrain-sea-slug-similarity-2498977005") model = AutoModel.from_pretrained("sasha/autotrain-sea-slug-similarity-2498977005") # Candidate images. dataset = load_dataset("sasha/australian_sea_slugs") ds = dataset["train"] def query(image, top_k=4): inputs = feature_extractor(image, return_tensors="pt") model_output = model(**inputs) embedding = model_output.pooler_output.detach() results = index.query(embedding, k=top_k) inx = results[0][0].tolist() logits = results[1][0].tolist() images = ds.select(inx)["image"] captions = ds.select(inx)["label"] images_with_captions = [(i, c) for i, c in zip(images,captions)] labels_with_probs = dict(zip(captions,logits)) labels_with_probs = {k: 1- v for k, v in labels_with_probs.items()} return images_with_captions, labels_with_probs with gr.Blocks() as demo: gr.Markdown("# Find my Sea Slug 🐌") gr.Markdown("## Use this Space to find your sea slug, based on the [Nudibranchs of the Sunshine Coast Australia dataset](https://huggingface.co/datasets/sasha/australian_sea_slugs)!") with gr.Row(): with gr.Column(min_width= 900): inputs = gr.Image(shape=(800, 1600)) btn = gr.Button("Find my sea slug 🐌!") with gr.Column(): outputs=gr.Gallery().style(grid=[2], height="auto") labels = gr.Label() gr.Markdown("### Image Examples") gr.Examples( examples=["elton.jpg", "ken.jpg", "gaga.jpg", "taylor.jpg"], inputs=inputs, outputs=[outputs,labels], fn=query, cache_examples=True, ) btn.click(query, inputs, [outputs, labels]) demo.launch()