import gradio as gr from huggingface_hub import ModelCard from compliance_checks import ( ComplianceSuite, ComplianceCheck, IntendedPurposeCheck, GeneralLimitationsCheck, ComputationalRequirementsCheck, ) checks = [ IntendedPurposeCheck(), GeneralLimitationsCheck(), ComputationalRequirementsCheck(), ] suite = ComplianceSuite(checks=checks) def status_emoji(status: bool): return "✅" if status else "🛑" def load_model_card_and_run_check(model_id): card = ModelCard.load(repo_id_or_path=model_id).content return card, *run_compliance_check(card) def run_compliance_check(model_card: str): results = suite.run(model_card) return [ *[gr.Accordion.update(label=f"{r.name} - {status_emoji(r.status)}", open=not r.status) for r in results], *[gr.Markdown.update(value=r.to_string()) for r in results], ] def fetch_and_run_compliance_check(model_id: str): model_card = ModelCard.load(repo_id_or_path=model_id).content return run_compliance_check(model_card=model_card) def compliance_result(compliance_check: ComplianceCheck): accordion = gr.Accordion(label=f"{compliance_check.name}", open=False) description = gr.Markdown("Run an evaluation to see results...") return accordion, description def read_file_and_run_checks(file_obj): with open(file_obj.name) as f: model_card = f.read() return model_card, *run_compliance_check(model_card=model_card) model_card_box = gr.TextArea(label="Model Card") # Have to destructure everything since I need to delay rendering. col = gr.Column() submit_markdown = gr.Button(value="Run validation checks") tab = gr.Tab(label="Results") col2 = gr.Column() compliance_results = [compliance_result(c) for c in suite.checks] compliance_accordions = [c[0] for c in compliance_results] compliance_descriptions = [c[1] for c in compliance_results] with gr.Blocks(css="""\ #file-upload .boundedheight { max-height: 100px; } code { overflow: scroll; } """) as demo: gr.Markdown("""\ # RegCheck AI This Space uses [model cards’](https://huggingface.co/docs/hub/model-cards) information as a source of regulatory \ compliance with some provisions of the proposed \ [EU AI Act](https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206). For the moment being, the \ demo is a **prototype** limited to specific provisions of Article 13 of the AI Act, related to “Transparency and \ provision of information to users”. **(DISCLAIMER: this is NOT a commercial or legal advice-related product)** To check a model card, first load it by doing any one of the following: - If the model is on the Hugging Face Hub, enter its model ID and click "Load model card". - If you have the model card on your computer as a Markdown file, select the "Upload your own card" tab and click \ "Upload a Markdown file". - Paste your model card's text directly into the "Model Card" text area. Once your card is loaded, the checks will run automatically. Edit the text content and click "Run validation checks" to receive new results. """) with gr.Row(): with gr.Column(): with gr.Tab(label="Load a card from the 🤗 Hugging Face Hub"): model_id_search = gr.Text(label="Model ID") gr.Examples( examples=[ "bigscience/bloom", "roberta-base", "openai/clip-vit-base-patch32", "distilbert-base-cased-distilled-squad", ], fn=lambda x: ModelCard.load(repo_id_or_path=x).content, inputs=[model_id_search], outputs=[model_card_box] # cache_examples=True, # TODO: Why does this break the app? ) submit_model_search = gr.Button(value="Load model card") with gr.Tab(label="Upload your own card"): file = gr.UploadButton(label="Upload a Markdown file", elem_id="file-upload") # TODO: Bug – uploading more than once doesn't trigger the function? Gradio bug? file.upload( fn=read_file_and_run_checks, inputs=[file], outputs=[model_card_box, *compliance_accordions, *compliance_descriptions] ) model_card_box.render() with col.render(): submit_markdown.render() with tab.render(): with col2.render(): for a, d in compliance_results: with a.render(): d.render() submit_model_search.click( fn=load_model_card_and_run_check, inputs=[model_id_search], outputs=[model_card_box, *compliance_accordions, *compliance_descriptions] ) submit_markdown.click( fn=run_compliance_check, inputs=[model_card_box], outputs=[*compliance_accordions, *compliance_descriptions] ) demo.launch()