File size: 7,845 Bytes
690332d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
import time
from typing import Dict, List, Literal, Optional, Union

from pydantic import BaseModel, Field

from vllm.utils import random_uuid
from vllm.sampling_params import SamplingParams


class ErrorResponse(BaseModel):
    object: str = "error"
    message: str
    type: str
    param: Optional[str] = None
    code: int


class ModelPermission(BaseModel):
    id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
    object: str = "model_permission"
    created: int = Field(default_factory=lambda: int(time.time()))
    allow_create_engine: bool = False
    allow_sampling: bool = True
    allow_logprobs: bool = True
    allow_search_indices: bool = False
    allow_view: bool = True
    allow_fine_tuning: bool = False
    organization: str = "*"
    group: Optional[str] = None
    is_blocking: str = False


class ModelCard(BaseModel):
    id: str
    object: str = "model"
    created: int = Field(default_factory=lambda: int(time.time()))
    owned_by: str = "vllm"
    root: Optional[str] = None
    parent: Optional[str] = None
    permission: List[ModelPermission] = Field(default_factory=list)


class ModelList(BaseModel):
    object: str = "list"
    data: List[ModelCard] = Field(default_factory=list)


class UsageInfo(BaseModel):
    prompt_tokens: int = 0
    total_tokens: int = 0
    completion_tokens: Optional[int] = 0


class ChatCompletionRequest(BaseModel):
    model: str
    messages: Union[str, List[Dict[str, str]]]
    temperature: Optional[float] = 0.7
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    max_tokens: Optional[int] = None
    stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
    stream: Optional[bool] = False
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None
    # Additional parameters supported by vLLM
    best_of: Optional[int] = None
    top_k: Optional[int] = -1
    ignore_eos: Optional[bool] = False
    use_beam_search: Optional[bool] = False
    stop_token_ids: Optional[List[int]] = Field(default_factory=list)
    skip_special_tokens: Optional[bool] = True
    spaces_between_special_tokens: Optional[bool] = True
    add_generation_prompt: Optional[bool] = True
    echo: Optional[bool] = False
    repetition_penalty: Optional[float] = 1.0
    min_p: Optional[float] = 0.0

    def to_sampling_params(self) -> SamplingParams:
        return SamplingParams(
            n=self.n,
            presence_penalty=self.presence_penalty,
            frequency_penalty=self.frequency_penalty,
            repetition_penalty=self.repetition_penalty,
            temperature=self.temperature,
            top_p=self.top_p,
            min_p=self.min_p,
            stop=self.stop,
            stop_token_ids=self.stop_token_ids,
            max_tokens=self.max_tokens,
            best_of=self.best_of,
            top_k=self.top_k,
            ignore_eos=self.ignore_eos,
            use_beam_search=self.use_beam_search,
            skip_special_tokens=self.skip_special_tokens,
            spaces_between_special_tokens=self.spaces_between_special_tokens,
        )


class CompletionRequest(BaseModel):
    model: str
    # a string, array of strings, array of tokens, or array of token arrays
    prompt: Union[List[int], List[List[int]], str, List[str]]
    suffix: Optional[str] = None
    max_tokens: Optional[int] = 16
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    stream: Optional[bool] = False
    logprobs: Optional[int] = None
    echo: Optional[bool] = False
    stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    best_of: Optional[int] = None
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None
    # Additional parameters supported by vLLM
    top_k: Optional[int] = -1
    ignore_eos: Optional[bool] = False
    use_beam_search: Optional[bool] = False
    stop_token_ids: Optional[List[int]] = Field(default_factory=list)
    skip_special_tokens: Optional[bool] = True
    spaces_between_special_tokens: Optional[bool] = True
    repetition_penalty: Optional[float] = 1.0
    min_p: Optional[float] = 0.0

    def to_sampling_params(self):
        echo_without_generation = self.echo and self.max_tokens == 0

        return SamplingParams(
            n=self.n,
            best_of=self.best_of,
            presence_penalty=self.presence_penalty,
            frequency_penalty=self.frequency_penalty,
            repetition_penalty=self.repetition_penalty,
            temperature=self.temperature,
            top_p=self.top_p,
            top_k=self.top_k,
            min_p=self.min_p,
            stop=self.stop,
            stop_token_ids=self.stop_token_ids,
            ignore_eos=self.ignore_eos,
            max_tokens=self.max_tokens if not echo_without_generation else 1,
            logprobs=self.logprobs,
            use_beam_search=self.use_beam_search,
            prompt_logprobs=self.logprobs if self.echo else None,
            skip_special_tokens=self.skip_special_tokens,
            spaces_between_special_tokens=(self.spaces_between_special_tokens),
        )


class LogProbs(BaseModel):
    text_offset: List[int] = Field(default_factory=list)
    token_logprobs: List[Optional[float]] = Field(default_factory=list)
    tokens: List[str] = Field(default_factory=list)
    top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None


class CompletionResponseChoice(BaseModel):
    index: int
    text: str
    logprobs: Optional[LogProbs] = None
    finish_reason: Optional[Literal["stop", "length"]] = None


class CompletionResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
    object: str = "text_completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[CompletionResponseChoice]
    usage: UsageInfo


class CompletionResponseStreamChoice(BaseModel):
    index: int
    text: str
    logprobs: Optional[LogProbs] = None
    finish_reason: Optional[Literal["stop", "length"]] = None


class CompletionStreamResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
    object: str = "text_completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[CompletionResponseStreamChoice]
    usage: Optional[UsageInfo] = Field(default=None)


class ChatMessage(BaseModel):
    role: str
    content: str


class ChatCompletionResponseChoice(BaseModel):
    index: int
    message: ChatMessage
    finish_reason: Optional[Literal["stop", "length"]] = None


class ChatCompletionResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
    object: str = "chat.completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[ChatCompletionResponseChoice]
    usage: UsageInfo


class DeltaMessage(BaseModel):
    role: Optional[str] = None
    content: Optional[str] = None


class ChatCompletionResponseStreamChoice(BaseModel):
    index: int
    delta: DeltaMessage
    finish_reason: Optional[Literal["stop", "length"]] = None


class ChatCompletionStreamResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
    object: str = "chat.completion.chunk"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[ChatCompletionResponseStreamChoice]
    usage: Optional[UsageInfo] = Field(default=None)