File size: 11,431 Bytes
690332d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import time
import codecs
from fastapi import Request
from typing import AsyncGenerator, AsyncIterator, Union
from vllm.logger import init_logger
from vllm.utils import random_uuid
from vllm.engine.async_llm_engine import AsyncLLMEngine
from protocol import (
    ChatCompletionRequest, ChatCompletionResponse,
    ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
    UsageInfo)
from vllm.outputs import RequestOutput
from serving_engine import OpenAIServing

logger = init_logger(__name__)


class OpenAIServingChat(OpenAIServing):

    def __init__(self,
                 engine: AsyncLLMEngine,
                 served_model: str,
                 response_role: str,
                 chat_template=None):
        super().__init__(engine=engine, served_model=served_model)
        self.response_role = response_role
        self._load_chat_template(chat_template)

    async def create_chat_completion(
        self, request: ChatCompletionRequest, raw_request: Request
    ) -> Union[ErrorResponse, AsyncGenerator[str, None],
               ChatCompletionResponse]:
        """Completion API similar to OpenAI's API.

        See  https://platform.openai.com/docs/api-reference/chat/create
        for the API specification. This API mimics the OpenAI ChatCompletion API.

        NOTE: Currently we do not support the following features:
            - function_call (Users should implement this by themselves)
            - logit_bias (to be supported by vLLM engine)
        """
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            return error_check_ret

        if request.logit_bias is not None and len(request.logit_bias) > 0:
            # TODO: support logit_bias in vLLM engine.
            return self.create_error_response(
                "logit_bias is not currently supported")

        try:
            prompt = self.tokenizer.apply_chat_template(
                conversation=request.messages,
                tokenize=False,
                add_generation_prompt=request.add_generation_prompt)
        except Exception as e:
            logger.error(
                f"Error in applying chat template from request: {str(e)}")
            return self.create_error_response(str(e))

        request_id = f"cmpl-{random_uuid()}"
        try:
            token_ids = self._validate_prompt_and_tokenize(request,
                                                           prompt=prompt)
            sampling_params = request.to_sampling_params()
        except ValueError as e:
            return self.create_error_response(str(e))

        result_generator = self.engine.generate(prompt, sampling_params,
                                                request_id, token_ids)
        # Streaming response
        if request.stream:
            return self.chat_completion_stream_generator(
                request, result_generator, request_id)
        else:
            return await self.chat_completion_full_generator(
                request, raw_request, result_generator, request_id)

    def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
        if request.add_generation_prompt:
            return self.response_role
        else:
            return request.messages[-1].role

    async def chat_completion_stream_generator(
            self, request: ChatCompletionRequest,
            result_generator: AsyncIterator[RequestOutput], request_id: str
    ) -> Union[ErrorResponse, AsyncGenerator[str, None]]:

        model_name = request.model
        created_time = int(time.monotonic())
        chunk_object_type = "chat.completion.chunk"

        # Send first response for each request.n (index) with the role
        role = self.get_chat_request_role(request)
        for i in range(request.n):
            choice_data = ChatCompletionResponseStreamChoice(
                index=i, delta=DeltaMessage(role=role), finish_reason=None)
            chunk = ChatCompletionStreamResponse(id=request_id,
                                                 object=chunk_object_type,
                                                 created=created_time,
                                                 choices=[choice_data],
                                                 model=model_name)
            data = chunk.model_dump_json(exclude_unset=True)
            yield f"data: {data}\n\n"

        # Send response to echo the input portion of the last message
        if request.echo:
            last_msg_content = ""
            if request.messages and isinstance(
                    request.messages, list) and request.messages[-1].get(
                        "content") and request.messages[-1].get(
                            "role") == role:
                last_msg_content = request.messages[-1]["content"]
            if last_msg_content:
                for i in range(request.n):
                    choice_data = ChatCompletionResponseStreamChoice(
                        index=i,
                        delta=DeltaMessage(content=last_msg_content),
                        finish_reason=None)
                    chunk = ChatCompletionStreamResponse(
                        id=request_id,
                        object=chunk_object_type,
                        created=created_time,
                        choices=[choice_data],
                        model=model_name)
                    data = chunk.model_dump_json(exclude_unset=True)
                    yield f"data: {data}\n\n"

        # Send response for each token for each request.n (index)
        previous_texts = [""] * request.n
        previous_num_tokens = [0] * request.n
        finish_reason_sent = [False] * request.n
        async for res in result_generator:
            res: RequestOutput
            for output in res.outputs:
                i = output.index

                if finish_reason_sent[i]:
                    continue

                delta_text = output.text[len(previous_texts[i]):]
                previous_texts[i] = output.text
                previous_num_tokens[i] = len(output.token_ids)

                if output.finish_reason is None:
                    # Send token-by-token response for each request.n
                    choice_data = ChatCompletionResponseStreamChoice(
                        index=i,
                        delta=DeltaMessage(content=delta_text),
                        finish_reason=None)
                    chunk = ChatCompletionStreamResponse(
                        id=request_id,
                        object=chunk_object_type,
                        created=created_time,
                        choices=[choice_data],
                        model=model_name)
                    data = chunk.model_dump_json(exclude_unset=True)
                    yield f"data: {data}\n\n"
                else:
                    # Send the finish response for each request.n only once
                    prompt_tokens = len(res.prompt_token_ids)
                    final_usage = UsageInfo(
                        prompt_tokens=prompt_tokens,
                        completion_tokens=previous_num_tokens[i],
                        total_tokens=prompt_tokens + previous_num_tokens[i],
                    )
                    choice_data = ChatCompletionResponseStreamChoice(
                        index=i,
                        delta=DeltaMessage(content=delta_text),
                        finish_reason=output.finish_reason)
                    chunk = ChatCompletionStreamResponse(
                        id=request_id,
                        object=chunk_object_type,
                        created=created_time,
                        choices=[choice_data],
                        model=model_name)
                    if final_usage is not None:
                        chunk.usage = final_usage
                    data = chunk.model_dump_json(exclude_unset=True,
                                                 exclude_none=True)
                    yield f"data: {data}\n\n"
                    finish_reason_sent[i] = True
        # Send the final done message after all response.n are finished
        yield "data: [DONE]\n\n"

    async def chat_completion_full_generator(
            self, request: ChatCompletionRequest, raw_request: Request,
            result_generator: AsyncIterator[RequestOutput],
            request_id: str) -> Union[ErrorResponse, ChatCompletionResponse]:

        model_name = request.model
        created_time = int(time.monotonic())
        final_res: RequestOutput = None

        async for res in result_generator:
            if await raw_request.is_disconnected():
                # Abort the request if the client disconnects.
                await self.engine.abort(request_id)
                return self.create_error_response("Client disconnected")
            final_res = res
        assert final_res is not None

        choices = []
        role = self.get_chat_request_role(request)
        for output in final_res.outputs:
            choice_data = ChatCompletionResponseChoice(
                index=output.index,
                message=ChatMessage(role=role, content=output.text),
                finish_reason=output.finish_reason,
            )
            choices.append(choice_data)

        if request.echo:
            last_msg_content = ""
            if request.messages and isinstance(
                    request.messages, list) and request.messages[-1].get(
                        "content") and request.messages[-1].get(
                            "role") == role:
                last_msg_content = request.messages[-1]["content"]

            for choice in choices:
                full_message = last_msg_content + choice.message.content
                choice.message.content = full_message

        num_prompt_tokens = len(final_res.prompt_token_ids)
        num_generated_tokens = sum(
            len(output.token_ids) for output in final_res.outputs)
        usage = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )
        response = ChatCompletionResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=choices,
            usage=usage,
        )

        return response

    def _load_chat_template(self, chat_template):
        if chat_template is not None:
            try:
                with open(chat_template, "r") as f:
                    self.tokenizer.chat_template = f.read()
            except OSError:
                # If opening a file fails, set chat template to be args to
                # ensure we decode so our escape are interpreted correctly
                self.tokenizer.chat_template = codecs.decode(
                    chat_template, "unicode_escape")

            logger.info(
                f"Using supplied chat template:\n{self.tokenizer.chat_template}"
            )
        elif self.tokenizer.chat_template is not None:
            logger.info(
                f"Using default chat template:\n{self.tokenizer.chat_template}"
            )
        else:
            logger.warning(
                "No chat template provided. Chat API will not work.")