File size: 27,057 Bytes
690332d
 
 
75da468
690332d
75da468
 
 
 
 
690332d
75da468
690332d
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
75da468
690332d
 
 
 
 
 
 
75da468
690332d
 
 
 
 
 
 
 
 
 
 
75da468
690332d
 
75da468
690332d
 
 
 
 
 
75da468
690332d
 
 
75da468
690332d
 
 
 
75da468
690332d
 
 
 
 
75da468
 
 
 
 
8f99309
 
 
 
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
75da468
 
 
 
690332d
75da468
 
 
 
 
 
690332d
 
8f99309
75da468
 
 
 
 
690332d
75da468
 
690332d
75da468
690332d
75da468
 
 
 
690332d
75da468
690332d
 
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
75da468
 
 
 
8f99309
 
 
 
 
 
 
 
 
 
75da468
 
 
 
8f99309
 
75da468
 
 
 
690332d
 
 
 
 
 
 
 
75da468
690332d
 
 
75da468
 
 
690332d
 
 
 
75da468
690332d
 
75da468
 
 
690332d
 
8f99309
 
 
 
 
 
 
 
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f99309
75da468
8f99309
75da468
 
 
 
 
 
690332d
 
75da468
690332d
 
 
75da468
 
 
 
 
 
 
 
 
8f99309
75da468
 
 
690332d
75da468
 
690332d
75da468
 
 
 
 
690332d
75da468
 
690332d
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
 
 
75da468
 
8f99309
 
 
 
 
 
 
 
 
 
75da468
 
 
 
8f99309
 
75da468
 
 
 
690332d
 
 
 
 
 
 
 
 
 
75da468
690332d
 
 
 
75da468
690332d
 
75da468
690332d
 
 
75da468
 
 
 
690332d
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f99309
 
 
 
 
 
 
 
 
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
75da468
690332d
 
 
8f99309
 
690332d
 
75da468
690332d
 
75da468
 
 
 
 
 
 
 
 
 
 
 
690332d
 
 
 
 
 
 
 
75da468
690332d
 
75da468
 
 
 
 
 
 
 
 
 
 
 
690332d
 
 
 
 
 
 
 
75da468
 
 
8f99309
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
75da468
690332d
 
75da468
8f99309
75da468
690332d
 
75da468
690332d
75da468
690332d
 
 
 
 
 
75da468
690332d
 
75da468
690332d
 
75da468
690332d
 
75da468
8f99309
75da468
690332d
 
75da468
690332d
75da468
690332d
 
 
75da468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
75da468
 
 
 
 
 
 
 
 
 
 
8f99309
75da468
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
import time
from typing import Any, Dict, List, Literal, Optional, Union

import openai.types.chat
import torch
from pydantic import BaseModel, ConfigDict, Field, model_validator
# pydantic needs the TypedDict from typing_extensions
from typing_extensions import Annotated, Required, TypedDict

from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams
from vllm.utils import random_uuid


class CustomChatCompletionContentPartParam(TypedDict, total=False):
    __pydantic_config__ = ConfigDict(extra="allow")  # type: ignore

    type: Required[str]
    """The type of the content part."""


ChatCompletionContentPartParam = Union[
    openai.types.chat.ChatCompletionContentPartParam,
    CustomChatCompletionContentPartParam]


class CustomChatCompletionMessageParam(TypedDict, total=False):
    """Enables custom roles in the Chat Completion API."""
    role: Required[str]
    """The role of the message's author."""

    content: Union[str, List[ChatCompletionContentPartParam]]
    """The contents of the message."""

    name: str
    """An optional name for the participant.

    Provides the model information to differentiate between participants of the
    same role.
    """


ChatCompletionMessageParam = Union[
    openai.types.chat.ChatCompletionMessageParam,
    CustomChatCompletionMessageParam]


class OpenAIBaseModel(BaseModel):
    # OpenAI API does not allow extra fields
    model_config = ConfigDict(extra="forbid")


class ErrorResponse(OpenAIBaseModel):
    object: str = "error"
    message: str
    type: str
    param: Optional[str] = None
    code: int


class ModelPermission(OpenAIBaseModel):
    id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
    object: str = "model_permission"
    created: int = Field(default_factory=lambda: int(time.time()))
    allow_create_engine: bool = False
    allow_sampling: bool = True
    allow_logprobs: bool = True
    allow_search_indices: bool = False
    allow_view: bool = True
    allow_fine_tuning: bool = False
    organization: str = "*"
    group: Optional[str] = None
    is_blocking: bool = False


class ModelCard(OpenAIBaseModel):
    id: str
    object: str = "model"
    created: int = Field(default_factory=lambda: int(time.time()))
    owned_by: str = "vllm"
    root: Optional[str] = None
    parent: Optional[str] = None
    max_model_len: Optional[int] = None
    permission: List[ModelPermission] = Field(default_factory=list)


class ModelList(OpenAIBaseModel):
    object: str = "list"
    data: List[ModelCard] = Field(default_factory=list)


class UsageInfo(OpenAIBaseModel):
    prompt_tokens: int = 0
    total_tokens: int = 0
    completion_tokens: Optional[int] = 0


class ResponseFormat(OpenAIBaseModel):
    # type must be "json_object" or "text"
    type: Literal["text", "json_object"]


class StreamOptions(OpenAIBaseModel):
    include_usage: Optional[bool] = True
    continuous_usage_stats: Optional[bool] = True


class FunctionDefinition(OpenAIBaseModel):
    name: str
    description: Optional[str] = None
    parameters: Optional[Dict[str, Any]] = None


class ChatCompletionToolsParam(OpenAIBaseModel):
    type: Literal["function"] = "function"
    function: FunctionDefinition


class ChatCompletionNamedFunction(OpenAIBaseModel):
    name: str


class ChatCompletionNamedToolChoiceParam(OpenAIBaseModel):
    function: ChatCompletionNamedFunction
    type: Literal["function"] = "function"


class ChatCompletionRequest(OpenAIBaseModel):
    # Ordered by official OpenAI API documentation
    # https://platform.openai.com/docs/api-reference/chat/create
    messages: List[ChatCompletionMessageParam]
    model: str
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    logprobs: Optional[bool] = False
    top_logprobs: Optional[int] = 0
    max_tokens: Optional[int] = None
    n: Optional[int] = 1
    presence_penalty: Optional[float] = 0.0
    response_format: Optional[ResponseFormat] = None
    seed: Optional[int] = Field(None,
                                ge=torch.iinfo(torch.long).min,
                                le=torch.iinfo(torch.long).max)
    stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
    stream: Optional[bool] = False
    stream_options: Optional[StreamOptions] = None
    temperature: Optional[float] = 0.7
    top_p: Optional[float] = 1.0
    tools: Optional[List[ChatCompletionToolsParam]] = None
    tool_choice: Optional[Union[Literal["none"],
                                ChatCompletionNamedToolChoiceParam]] = "none"
    user: Optional[str] = None

    # doc: begin-chat-completion-sampling-params
    best_of: Optional[int] = None
    use_beam_search: Optional[bool] = False
    top_k: Optional[int] = -1
    min_p: Optional[float] = 0.0
    repetition_penalty: Optional[float] = 1.0
    length_penalty: Optional[float] = 1.0
    early_stopping: Optional[bool] = False
    ignore_eos: Optional[bool] = False
    min_tokens: Optional[int] = 0
    stop_token_ids: Optional[List[int]] = Field(default_factory=list)
    skip_special_tokens: Optional[bool] = True
    spaces_between_special_tokens: Optional[bool] = True
    # doc: end-chat-completion-sampling-params

    # doc: begin-chat-completion-extra-params
    echo: Optional[bool] = Field(
        default=False,
        description=(
            "If true, the new message will be prepended with the last message "
            "if they belong to the same role."),
    )
    add_generation_prompt: Optional[bool] = Field(
        default=True,
        description=
        ("If true, the generation prompt will be added to the chat template. "
         "This is a parameter used by chat template in tokenizer config of the "
         "model."),
    )
    add_special_tokens: Optional[bool] = Field(
        default=False,
        description=(
            "If true, special tokens (e.g. BOS) will be added to the prompt "
            "on top of what is added by the chat template. "
            "For most models, the chat template takes care of adding the "
            "special tokens so this should be set to False (as is the "
            "default)."),
    )
    documents: Optional[List[Dict[str, str]]] = Field(
        default=None,
        description=
        ("A list of dicts representing documents that will be accessible to "
         "the model if it is performing RAG (retrieval-augmented generation)."
         " If the template does not support RAG, this argument will have no "
         "effect. We recommend that each document should be a dict containing "
         "\"title\" and \"text\" keys."),
    )
    chat_template: Optional[str] = Field(
        default=None,
        description=(
            "A Jinja template to use for this conversion. "
            "If this is not passed, the model's default chat template will be "
            "used instead."),
    )
    chat_template_kwargs: Optional[Dict[str, Any]] = Field(
        default=None,
        description=("Additional kwargs to pass to the template renderer. "
                     "Will be accessible by the chat template."),
    )
    include_stop_str_in_output: Optional[bool] = Field(
        default=False,
        description=(
            "Whether to include the stop string in the output. "
            "This is only applied when the stop or stop_token_ids is set."),
    )
    guided_json: Optional[Union[str, dict, BaseModel]] = Field(
        default=None,
        description=("If specified, the output will follow the JSON schema."),
    )
    guided_regex: Optional[str] = Field(
        default=None,
        description=(
            "If specified, the output will follow the regex pattern."),
    )
    guided_choice: Optional[List[str]] = Field(
        default=None,
        description=(
            "If specified, the output will be exactly one of the choices."),
    )
    guided_grammar: Optional[str] = Field(
        default=None,
        description=(
            "If specified, the output will follow the context free grammar."),
    )
    guided_decoding_backend: Optional[str] = Field(
        default=None,
        description=(
            "If specified, will override the default guided decoding backend "
            "of the server for this specific request. If set, must be either "
            "'outlines' / 'lm-format-enforcer'"))
    guided_whitespace_pattern: Optional[str] = Field(
        default=None,
        description=(
            "If specified, will override the default whitespace pattern "
            "for guided json decoding."))

    # doc: end-chat-completion-extra-params

    def to_sampling_params(self) -> SamplingParams:
        # We now allow logprobs being true without top_logrobs.

        logits_processors = None
        if self.logit_bias:
            logit_bias: Dict[int, float] = {}
            try:
                for token_id, bias in self.logit_bias.items():
                    # Convert token_id to integer before we add to LLMEngine
                    # Clamp the bias between -100 and 100 per OpenAI API spec
                    logit_bias[int(token_id)] = min(100, max(-100, bias))
            except ValueError as exc:
                raise ValueError(f"Found token_id `{token_id}` in logit_bias "
                                 f"but token_id must be an integer or string "
                                 f"representing an integer") from exc

            def logit_bias_logits_processor(
                    token_ids: List[int],
                    logits: torch.Tensor) -> torch.Tensor:
                for token_id, bias in logit_bias.items():
                    logits[token_id] += bias
                return logits

            logits_processors = [logit_bias_logits_processor]

        return SamplingParams(
            n=self.n,
            presence_penalty=self.presence_penalty,
            frequency_penalty=self.frequency_penalty,
            repetition_penalty=self.repetition_penalty,
            temperature=self.temperature,
            top_p=self.top_p,
            min_p=self.min_p,
            seed=self.seed,
            stop=self.stop,
            stop_token_ids=self.stop_token_ids,
            max_tokens=self.max_tokens,
            min_tokens=self.min_tokens,
            logprobs=self.top_logprobs if self.logprobs else None,
            prompt_logprobs=self.top_logprobs if self.echo else None,
            best_of=self.best_of,
            top_k=self.top_k,
            ignore_eos=self.ignore_eos,
            use_beam_search=self.use_beam_search,
            early_stopping=self.early_stopping,
            skip_special_tokens=self.skip_special_tokens,
            spaces_between_special_tokens=self.spaces_between_special_tokens,
            include_stop_str_in_output=self.include_stop_str_in_output,
            length_penalty=self.length_penalty,
            logits_processors=logits_processors,
        )

    @model_validator(mode='before')
    @classmethod
    def validate_stream_options(cls, values):
        if (values.get('stream_options') is not None
                and not values.get('stream')):
            raise ValueError(
                "stream_options can only be set if stream is true")
        return values

    @model_validator(mode="before")
    @classmethod
    def check_guided_decoding_count(cls, data):
        guide_count = sum([
            "guided_json" in data and data["guided_json"] is not None,
            "guided_regex" in data and data["guided_regex"] is not None,
            "guided_choice" in data and data["guided_choice"] is not None
        ])
        # you can only use one kind of guided decoding
        if guide_count > 1:
            raise ValueError(
                "You can only use one kind of guided decoding "
                "('guided_json', 'guided_regex' or 'guided_choice').")
        # you can only either use guided decoding or tools, not both
        if guide_count > 1 and "tool_choice" in data and data[
                "tool_choice"] != "none":
            raise ValueError(
                "You can only either use guided decoding or tools, not both.")
        return data

    @model_validator(mode="before")
    @classmethod
    def check_tool_choice(cls, data):
        if "tool_choice" in data and data["tool_choice"] != "none":
            if not isinstance(data["tool_choice"], dict):
                raise ValueError("Currently only named tools are supported.")
            if "tools" not in data or data["tools"] is None:
                raise ValueError(
                    "When using `tool_choice`, `tools` must be set.")
        return data

    @model_validator(mode="before")
    @classmethod
    def check_logprobs(cls, data):
        if "top_logprobs" in data and data["top_logprobs"] is not None:
            if "logprobs" not in data or data["logprobs"] is False:
                raise ValueError(
                    "when using `top_logprobs`, `logprobs` must be set to true."
                )
            elif data["top_logprobs"] < 0:
                raise ValueError(
                    "`top_logprobs` must be a value a positive value.")
        return data


class CompletionRequest(OpenAIBaseModel):
    # Ordered by official OpenAI API documentation
    # https://platform.openai.com/docs/api-reference/completions/create
    model: str
    prompt: Union[List[int], List[List[int]], str, List[str]]
    best_of: Optional[int] = None
    echo: Optional[bool] = False
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    logprobs: Optional[int] = None
    max_tokens: Optional[int] = 16
    n: int = 1
    presence_penalty: Optional[float] = 0.0
    seed: Optional[int] = Field(None,
                                ge=torch.iinfo(torch.long).min,
                                le=torch.iinfo(torch.long).max)
    stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
    stream: Optional[bool] = False
    stream_options: Optional[StreamOptions] = None
    suffix: Optional[str] = None
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    user: Optional[str] = None

    # doc: begin-completion-sampling-params
    use_beam_search: Optional[bool] = False
    top_k: Optional[int] = -1
    min_p: Optional[float] = 0.0
    repetition_penalty: Optional[float] = 1.0
    length_penalty: Optional[float] = 1.0
    early_stopping: Optional[bool] = False
    stop_token_ids: Optional[List[int]] = Field(default_factory=list)
    ignore_eos: Optional[bool] = False
    min_tokens: Optional[int] = 0
    skip_special_tokens: Optional[bool] = True
    spaces_between_special_tokens: Optional[bool] = True
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
    # doc: end-completion-sampling-params

    # doc: begin-completion-extra-params
    include_stop_str_in_output: Optional[bool] = Field(
        default=False,
        description=(
            "Whether to include the stop string in the output. "
            "This is only applied when the stop or stop_token_ids is set."),
    )
    response_format: Optional[ResponseFormat] = Field(
        default=None,
        description=
        ("Similar to chat completion, this parameter specifies the format of "
         "output. Only {'type': 'json_object'} or {'type': 'text' } is "
         "supported."),
    )
    guided_json: Optional[Union[str, dict, BaseModel]] = Field(
        default=None,
        description=("If specified, the output will follow the JSON schema."),
    )
    guided_regex: Optional[str] = Field(
        default=None,
        description=(
            "If specified, the output will follow the regex pattern."),
    )
    guided_choice: Optional[List[str]] = Field(
        default=None,
        description=(
            "If specified, the output will be exactly one of the choices."),
    )
    guided_grammar: Optional[str] = Field(
        default=None,
        description=(
            "If specified, the output will follow the context free grammar."),
    )
    guided_decoding_backend: Optional[str] = Field(
        default=None,
        description=(
            "If specified, will override the default guided decoding backend "
            "of the server for this specific request. If set, must be one of "
            "'outlines' / 'lm-format-enforcer'"))
    guided_whitespace_pattern: Optional[str] = Field(
        default=None,
        description=(
            "If specified, will override the default whitespace pattern "
            "for guided json decoding."))

    # doc: end-completion-extra-params

    def to_sampling_params(self):
        echo_without_generation = self.echo and self.max_tokens == 0

        logits_processors = None
        if self.logit_bias:
            logit_bias: Dict[int, float] = {}
            try:
                for token_id, bias in self.logit_bias.items():
                    # Convert token_id to integer
                    # Clamp the bias between -100 and 100 per OpenAI API spec
                    logit_bias[int(token_id)] = min(100, max(-100, bias))
            except ValueError as exc:
                raise ValueError(f"Found token_id `{token_id}` in logit_bias "
                                 f"but token_id must be an integer or string "
                                 f"representing an integer") from exc

            def logit_bias_logits_processor(
                    token_ids: List[int],
                    logits: torch.Tensor) -> torch.Tensor:
                for token_id, bias in logit_bias.items():
                    logits[token_id] += bias
                return logits

            logits_processors = [logit_bias_logits_processor]

        return SamplingParams(
            n=self.n,
            best_of=self.best_of,
            presence_penalty=self.presence_penalty,
            frequency_penalty=self.frequency_penalty,
            repetition_penalty=self.repetition_penalty,
            temperature=self.temperature,
            top_p=self.top_p,
            top_k=self.top_k,
            min_p=self.min_p,
            seed=self.seed,
            stop=self.stop,
            stop_token_ids=self.stop_token_ids,
            ignore_eos=self.ignore_eos,
            max_tokens=self.max_tokens if not echo_without_generation else 1,
            min_tokens=self.min_tokens,
            logprobs=self.logprobs,
            use_beam_search=self.use_beam_search,
            early_stopping=self.early_stopping,
            prompt_logprobs=self.logprobs if self.echo else None,
            skip_special_tokens=self.skip_special_tokens,
            spaces_between_special_tokens=(self.spaces_between_special_tokens),
            include_stop_str_in_output=self.include_stop_str_in_output,
            length_penalty=self.length_penalty,
            logits_processors=logits_processors,
            truncate_prompt_tokens=self.truncate_prompt_tokens,
        )

    @model_validator(mode="before")
    @classmethod
    def check_guided_decoding_count(cls, data):
        guide_count = sum([
            "guided_json" in data and data["guided_json"] is not None,
            "guided_regex" in data and data["guided_regex"] is not None,
            "guided_choice" in data and data["guided_choice"] is not None
        ])
        if guide_count > 1:
            raise ValueError(
                "You can only use one kind of guided decoding "
                "('guided_json', 'guided_regex' or 'guided_choice').")
        return data

    @model_validator(mode="before")
    @classmethod
    def check_logprobs(cls, data):
        if "logprobs" in data and data[
                "logprobs"] is not None and not data["logprobs"] >= 0:
            raise ValueError("if passed, `logprobs` must be a positive value.")
        return data

    @model_validator(mode="before")
    @classmethod
    def validate_stream_options(cls, data):
        if data.get("stream_options") and not data.get("stream"):
            raise ValueError(
                "Stream options can only be defined when stream is True.")
        return data


class EmbeddingRequest(BaseModel):
    # Ordered by official OpenAI API documentation
    # https://platform.openai.com/docs/api-reference/embeddings
    model: str
    input: Union[List[int], List[List[int]], str, List[str]]
    encoding_format: Optional[str] = Field('float', pattern='^(float|base64)$')
    dimensions: Optional[int] = None
    user: Optional[str] = None

    # doc: begin-embedding-pooling-params
    additional_data: Optional[Any] = None

    # doc: end-embedding-pooling-params

    def to_pooling_params(self):
        return PoolingParams(additional_data=self.additional_data)


class CompletionLogProbs(OpenAIBaseModel):
    text_offset: List[int] = Field(default_factory=list)
    token_logprobs: List[Optional[float]] = Field(default_factory=list)
    tokens: List[str] = Field(default_factory=list)
    top_logprobs: List[Optional[Dict[str,
                                     float]]] = Field(default_factory=list)


class CompletionResponseChoice(OpenAIBaseModel):
    index: int
    text: str
    logprobs: Optional[CompletionLogProbs] = None
    finish_reason: Optional[str] = None
    stop_reason: Optional[Union[int, str]] = Field(
        default=None,
        description=(
            "The stop string or token id that caused the completion "
            "to stop, None if the completion finished for some other reason "
            "including encountering the EOS token"),
    )


class CompletionResponse(OpenAIBaseModel):
    id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
    object: str = "text_completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[CompletionResponseChoice]
    usage: UsageInfo


class CompletionResponseStreamChoice(OpenAIBaseModel):
    index: int
    text: str
    logprobs: Optional[CompletionLogProbs] = None
    finish_reason: Optional[str] = None
    stop_reason: Optional[Union[int, str]] = Field(
        default=None,
        description=(
            "The stop string or token id that caused the completion "
            "to stop, None if the completion finished for some other reason "
            "including encountering the EOS token"),
    )


class CompletionStreamResponse(OpenAIBaseModel):
    id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
    object: str = "text_completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[CompletionResponseStreamChoice]
    usage: Optional[UsageInfo] = Field(default=None)


class EmbeddingResponseData(BaseModel):
    index: int
    object: str = "embedding"
    embedding: Union[List[float], str]


class EmbeddingResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
    object: str = "list"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    data: List[EmbeddingResponseData]
    usage: UsageInfo


class FunctionCall(OpenAIBaseModel):
    name: str
    arguments: str


class ToolCall(OpenAIBaseModel):
    id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
    type: Literal["function"] = "function"
    function: FunctionCall


class ChatMessage(OpenAIBaseModel):
    role: str
    content: str
    tool_calls: List[ToolCall] = Field(default_factory=list)


class ChatCompletionLogProb(OpenAIBaseModel):
    token: str
    logprob: float = -9999.0
    bytes: Optional[List[int]] = None


class ChatCompletionLogProbsContent(ChatCompletionLogProb):
    top_logprobs: List[ChatCompletionLogProb] = Field(default_factory=list)


class ChatCompletionLogProbs(OpenAIBaseModel):
    content: Optional[List[ChatCompletionLogProbsContent]] = None


class ChatCompletionResponseChoice(OpenAIBaseModel):
    index: int
    message: ChatMessage
    logprobs: Optional[ChatCompletionLogProbs] = None
    finish_reason: Optional[str] = None
    stop_reason: Optional[Union[int, str]] = None


class ChatCompletionResponse(OpenAIBaseModel):
    id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
    object: Literal["chat.completion"] = "chat.completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[ChatCompletionResponseChoice]
    usage: UsageInfo


class DeltaMessage(OpenAIBaseModel):
    role: Optional[str] = None
    content: Optional[str] = None
    tool_calls: List[ToolCall] = Field(default_factory=list)


class ChatCompletionResponseStreamChoice(OpenAIBaseModel):
    index: int
    delta: DeltaMessage
    logprobs: Optional[ChatCompletionLogProbs] = None
    finish_reason: Optional[str] = None
    stop_reason: Optional[Union[int, str]] = None


class ChatCompletionStreamResponse(OpenAIBaseModel):
    id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
    object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[ChatCompletionResponseStreamChoice]
    usage: Optional[UsageInfo] = Field(default=None)


class BatchRequestInput(OpenAIBaseModel):
    """
    The per-line object of the batch input file.

    NOTE: Currently only the `/v1/chat/completions` endpoint is supported.
    """

    # A developer-provided per-request id that will be used to match outputs to
    # inputs. Must be unique for each request in a batch.
    custom_id: str

    # The HTTP method to be used for the request. Currently only POST is
    # supported.
    method: str

    # The OpenAI API relative URL to be used for the request. Currently
    # /v1/chat/completions is supported.
    url: str

    # The parameteters of the request.
    body: Union[ChatCompletionRequest, ]


class BatchResponseData(OpenAIBaseModel):
    # HTTP status code of the response.
    status_code: int = 200

    # An unique identifier for the API request.
    request_id: str

    # The body of the response.
    body: Union[ChatCompletionResponse, ]


class BatchRequestOutput(OpenAIBaseModel):
    """
    The per-line object of the batch output and error files
    """

    id: str

    # A developer-provided per-request id that will be used to match outputs to
    # inputs.
    custom_id: str

    response: Optional[BatchResponseData]

    # For requests that failed with a non-HTTP error, this will contain more
    # information on the cause of the failure.
    error: Optional[Any]


class TokenizeRequest(OpenAIBaseModel):
    model: str
    prompt: str
    add_special_tokens: bool = Field(default=True)


class TokenizeResponse(OpenAIBaseModel):
    tokens: List[int]
    count: int
    max_model_len: int


class DetokenizeRequest(OpenAIBaseModel):
    model: str
    tokens: List[int]


class DetokenizeResponse(OpenAIBaseModel):
    prompt: str