File size: 27,120 Bytes
690332d
8f99309
 
 
 
 
 
 
 
690332d
8f99309
 
 
 
690332d
8f99309
 
 
 
690332d
 
 
8f99309
 
 
 
 
 
 
 
 
690332d
8f99309
 
 
 
690332d
 
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
 
 
8f99309
 
690332d
8f99309
 
 
 
 
 
 
690332d
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
8f99309
 
 
690332d
 
 
 
8f99309
 
 
690332d
8f99309
690332d
 
 
 
 
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
690332d
8f99309
690332d
8f99309
 
 
 
 
 
690332d
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
 
 
8f99309
 
 
 
 
690332d
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
 
8f99309
690332d
8f99309
 
 
 
 
 
 
690332d
 
 
 
 
8f99309
690332d
 
 
8f99309
 
 
 
 
690332d
8f99309
690332d
 
8f99309
690332d
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
 
 
8f99309
 
 
 
690332d
8f99309
 
 
690332d
 
8f99309
690332d
 
 
 
 
 
8f99309
 
690332d
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
 
8f99309
 
690332d
8f99309
690332d
 
 
 
8f99309
 
 
690332d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
 
690332d
8f99309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import codecs
import time
from dataclasses import dataclass, field
from functools import cached_property
from typing import (AsyncGenerator, AsyncIterator, Awaitable, Dict, Iterable,
                    List, Optional)
from typing import Sequence as GenericSequence
from typing import TypedDict, Union, cast, final

from fastapi import Request
from openai.types.chat import (ChatCompletionContentPartImageParam,
                               ChatCompletionContentPartTextParam)

from vllm.config import ModelConfig
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
    ChatCompletionContentPartParam, ChatCompletionLogProb,
    ChatCompletionLogProbs, ChatCompletionLogProbsContent,
    ChatCompletionMessageParam, ChatCompletionNamedToolChoiceParam,
    ChatCompletionRequest, ChatCompletionResponse,
    ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
    FunctionCall, ToolCall, UsageInfo)
from vllm.entrypoints.openai.serving_engine import (LoRAModulePath,
                                                    OpenAIServing)
from vllm.inputs import PromptInputs
from vllm.logger import init_logger
from vllm.model_executor.guided_decoding import (
    get_guided_decoding_logits_processor)
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal.utils import async_get_and_parse_image
from vllm.outputs import RequestOutput
from vllm.sequence import Logprob
from vllm.tracing import (contains_trace_headers, extract_trace_headers,
                          log_tracing_disabled_warning)
from vllm.utils import random_uuid

logger = init_logger(__name__)


@final  # So that it should be compatible with Dict[str, str]
class ConversationMessage(TypedDict):
    role: str
    content: str


@dataclass(frozen=True)
class ChatMessageParseResult:
    messages: List[ConversationMessage]
    mm_futures: List[Awaitable[MultiModalDataDict]] = field(
        default_factory=list)


class OpenAIServingChat(OpenAIServing):

    def __init__(self,
                 engine: AsyncLLMEngine,
                 model_config: ModelConfig,
                 served_model_names: List[str],
                 response_role: str,
                 lora_modules: Optional[List[LoRAModulePath]] = None,
                 chat_template: Optional[str] = None):
        super().__init__(engine=engine,
                         model_config=model_config,
                         served_model_names=served_model_names,
                         lora_modules=lora_modules)

        self.response_role = response_role
        self._load_chat_template(chat_template)

    def _load_chat_template(self, chat_template: Optional[str]):
        tokenizer = self.tokenizer

        if chat_template is not None:
            try:
                with open(chat_template, "r") as f:
                    tokenizer.chat_template = f.read()
            except OSError as e:
                JINJA_CHARS = "{}\n"
                if not any(c in chat_template for c in JINJA_CHARS):
                    msg = (f"The supplied chat template ({chat_template}) "
                           f"looks like a file path, but it failed to be "
                           f"opened. Reason: {e}")
                    raise ValueError(msg) from e

                # If opening a file fails, set chat template to be args to
                # ensure we decode so our escape are interpreted correctly
                tokenizer.chat_template = codecs.decode(
                    chat_template, "unicode_escape")

            logger.info("Using supplied chat template:\n%s",
                        tokenizer.chat_template)
        elif tokenizer.chat_template is not None:
            logger.info("Using default chat template:\n%s",
                        tokenizer.chat_template)
        else:
            logger.warning(
                "No chat template provided. Chat API will not work.")

    @cached_property
    def image_token_str(self) -> Optional[str]:
        # TODO: Let user specify how to insert image tokens into prompt
        # (similar to chat template)
        model_type = self.model_config.hf_config.model_type
        if model_type == "phi3_v":
            # Workaround since this token is not defined in the tokenizer
            return "<|image_1|>"
        if model_type in ("blip-2", "chatglm", "fuyu", "minicpmv",
                          "paligemma"):
            # These models do not use image tokens in the prompt
            return None
        if model_type.startswith("llava"):
            return self.tokenizer.decode(
                self.model_config.hf_config.image_token_index)

        else:
            raise TypeError("Unknown model type: {model_type}")

    # TODO: Let user specify how to insert image tokens into prompt
    # (similar to chat template)
    def _get_full_image_text_prompt(self, image_token_str: str,
                                    text_prompt: str) -> str:
        """Combine image and text prompts for vision language model"""

        # NOTE: For now we assume all model architectures use the same
        # image + text prompt format. This may change in the future.
        return f"{image_token_str}\n{text_prompt}"

    def _parse_chat_message_content_parts(
        self,
        role: str,
        parts: Iterable[ChatCompletionContentPartParam],
    ) -> ChatMessageParseResult:
        texts: List[str] = []
        mm_futures: List[Awaitable[MultiModalDataDict]] = []

        for part in parts:
            part_type = part["type"]
            if part_type == "text":
                text = cast(ChatCompletionContentPartTextParam, part)["text"]
                texts.append(text)
            elif part_type == "image_url":
                if len(mm_futures) > 0:
                    raise NotImplementedError(
                        "Multiple 'image_url' input is currently not supported."
                    )

                image_url = cast(ChatCompletionContentPartImageParam,
                                 part)["image_url"]

                if image_url.get("detail", "auto") != "auto":
                    logger.warning(
                        "'image_url.detail' is currently not supported and "
                        "will be ignored.")

                image_future = async_get_and_parse_image(image_url["url"])
                mm_futures.append(image_future)
            else:
                raise NotImplementedError(f"Unknown part type: {part_type}")

        text_prompt = "\n".join(texts)

        if mm_futures:
            image_token_str = self.image_token_str
            if image_token_str is not None:
                if image_token_str in text_prompt:
                    logger.warning(
                        "Detected image token string in the text prompt. "
                        "Skipping prompt formatting.")
                else:
                    text_prompt = self._get_full_image_text_prompt(
                        image_token_str=image_token_str,
                        text_prompt=text_prompt,
                    )

        messages = [ConversationMessage(role=role, content=text_prompt)]

        return ChatMessageParseResult(messages=messages, mm_futures=mm_futures)

    def _parse_chat_message_content(
        self,
        message: ChatCompletionMessageParam,
    ) -> ChatMessageParseResult:
        role = message["role"]
        content = message.get("content")

        if content is None:
            return ChatMessageParseResult(messages=[], mm_futures=[])
        if isinstance(content, str):
            messages = [ConversationMessage(role=role, content=content)]
            return ChatMessageParseResult(messages=messages, mm_futures=[])

        return self._parse_chat_message_content_parts(role, content)

    async def create_chat_completion(
        self,
        request: ChatCompletionRequest,
        raw_request: Optional[Request] = None
    ) -> Union[ErrorResponse, AsyncGenerator[str, None],
               ChatCompletionResponse]:
        """Completion API similar to OpenAI's API.

        See https://platform.openai.com/docs/api-reference/chat/create
        for the API specification. This API mimics the OpenAI
        ChatCompletion API.

        NOTE: Currently we do not support the following feature:
            - function_call (Users should implement this by themselves)
        """
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            return error_check_ret

        try:
            conversation: List[ConversationMessage] = []
            mm_futures: List[Awaitable[MultiModalDataDict]] = []

            for msg in request.messages:
                chat_parsed_result = self._parse_chat_message_content(msg)

                conversation.extend(chat_parsed_result.messages)
                mm_futures.extend(chat_parsed_result.mm_futures)

            tool_dicts = None if request.tools is None else [
                tool.model_dump() for tool in request.tools
            ]

            prompt = self.tokenizer.apply_chat_template(
                conversation=conversation,
                tokenize=False,
                add_generation_prompt=request.add_generation_prompt,
                tools=tool_dicts,
                documents=request.documents,
                chat_template=request.chat_template,
                **(request.chat_template_kwargs or {}),
            )
        except Exception as e:
            logger.error("Error in applying chat template from request: %s", e)
            return self.create_error_response(str(e))

        mm_data: Optional[MultiModalDataDict] = None
        try:
            if len(mm_futures):
                # since we support only single mm data currently
                assert len(
                    mm_futures
                ) == 1, "Multiple 'image_url' input is currently not supported."
                mm_data = await mm_futures[0]
        except Exception as e:
            logger.error("Error in loading multi-modal data: %s", e)
            return self.create_error_response(str(e))

        request_id = f"cmpl-{random_uuid()}"
        try:
            # Tokenize/detokenize depending on prompt format (string/token list)
            prompt_ids, prompt_text = self._validate_prompt_and_tokenize(
                request,
                prompt=prompt,
                add_special_tokens=request.add_special_tokens)
            sampling_params = request.to_sampling_params()
            lora_request = self._maybe_get_lora(request)
            decoding_config = await self.engine.get_decoding_config()
            guided_decoding_backend = request.guided_decoding_backend \
                or decoding_config.guided_decoding_backend
            guided_decode_logits_processor = (
                await get_guided_decoding_logits_processor(
                    guided_decoding_backend, request, await
                    self.engine.get_tokenizer()))
            if guided_decode_logits_processor:
                if sampling_params.logits_processors is None:
                    sampling_params.logits_processors = []
                sampling_params.logits_processors.append(
                    guided_decode_logits_processor)
        except ValueError as e:
            return self.create_error_response(str(e))

        inputs: PromptInputs = {
            "prompt": prompt_text,
            "prompt_token_ids": prompt_ids,
        }
        if mm_data:
            inputs["multi_modal_data"] = mm_data

        is_tracing_enabled = await self.engine.is_tracing_enabled()
        trace_headers = None
        if is_tracing_enabled and raw_request:
            trace_headers = extract_trace_headers(raw_request.headers)
        if not is_tracing_enabled and raw_request and contains_trace_headers(
                raw_request.headers):
            log_tracing_disabled_warning()

        result_generator = self.engine.generate(
            inputs,
            sampling_params,
            request_id,
            lora_request,
            trace_headers=trace_headers,
        )
        # Streaming response
        if request.stream:
            return self.chat_completion_stream_generator(
                request, result_generator, request_id, conversation)
        else:
            try:
                return await self.chat_completion_full_generator(
                    request, raw_request, result_generator, request_id,
                    conversation)
            except ValueError as e:
                # TODO: Use a vllm-specific Validation Error
                return self.create_error_response(str(e))

    def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
        if request.add_generation_prompt:
            return self.response_role
        else:
            return request.messages[-1]["role"]

    async def chat_completion_stream_generator(
            self, request: ChatCompletionRequest,
            result_generator: AsyncIterator[RequestOutput], request_id: str,
            conversation: List[ConversationMessage]
    ) -> AsyncGenerator[str, None]:
        model_name = self.served_model_names[0]
        created_time = int(time.time())
        chunk_object_type = "chat.completion.chunk"
        first_iteration = True

        # Send response for each token for each request.n (index)
        assert request.n is not None
        previous_texts = [""] * request.n
        previous_num_tokens = [0] * request.n
        finish_reason_sent = [False] * request.n
        try:
            async for res in result_generator:
                # We need to do it here, because if there are exceptions in
                # the result_generator, it needs to be sent as the FIRST
                # response (by the try...catch).
                if first_iteration:
                    # Send first response for each request.n (index) with
                    # the role
                    role = self.get_chat_request_role(request)
                    for i in range(request.n):
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=i,
                            delta=DeltaMessage(role=role),
                            logprobs=None,
                            finish_reason=None)
                        chunk = ChatCompletionStreamResponse(
                            id=request_id,
                            object=chunk_object_type,
                            created=created_time,
                            choices=[choice_data],
                            model=model_name)
                        if (request.stream_options
                                and request.stream_options.include_usage):
                            chunk.usage = None
                        data = chunk.model_dump_json(exclude_unset=True)
                        yield f"data: {data}\n\n"

                    # Send response to echo the input portion of the
                    # last message
                    if request.echo:
                        last_msg_content = ""
                        if conversation and conversation[-1].get(
                                "content") and conversation[-1].get(
                                    "role") == role:
                            last_msg_content = conversation[-1]["content"]

                        if last_msg_content:
                            for i in range(request.n):
                                choice_data = (
                                    ChatCompletionResponseStreamChoice(
                                        index=i,
                                        delta=DeltaMessage(
                                            content=last_msg_content),
                                        finish_reason=None))
                                chunk = ChatCompletionStreamResponse(
                                    id=request_id,
                                    object=chunk_object_type,
                                    created=created_time,
                                    choices=[choice_data],
                                    logprobs=None,
                                    model=model_name)
                                if (request.stream_options and
                                        request.stream_options.include_usage):
                                    chunk.usage = None
                                data = chunk.model_dump_json(
                                    exclude_unset=True)
                                yield f"data: {data}\n\n"
                    first_iteration = False

                for output in res.outputs:
                    i = output.index

                    if finish_reason_sent[i]:
                        continue

                    delta_token_ids = output.token_ids[previous_num_tokens[i]:]
                    out_logprobs = output.logprobs[
                        previous_num_tokens[i]:] if output.logprobs else None

                    if request.logprobs and request.top_logprobs is not None:
                        assert out_logprobs is not None, (
                            "Did not output logprobs")
                        logprobs = self._create_chat_logprobs(
                            token_ids=delta_token_ids,
                            top_logprobs=out_logprobs,
                            num_output_top_logprobs=request.top_logprobs,
                        )
                    else:
                        logprobs = None

                    delta_text = output.text[len(previous_texts[i]):]
                    previous_texts[i] = output.text
                    previous_num_tokens[i] = len(output.token_ids)

                    if request.tool_choice and type(
                            request.tool_choice
                    ) is ChatCompletionNamedToolChoiceParam:
                        delta_message = DeltaMessage(tool_calls=[
                            ToolCall(function=FunctionCall(
                                name=request.tool_choice.function.name,
                                arguments=delta_text))
                        ])
                    else:
                        delta_message = DeltaMessage(content=delta_text)

                    if output.finish_reason is None:
                        # Send token-by-token response for each request.n

                        choice_data = ChatCompletionResponseStreamChoice(
                            index=i,
                            delta=delta_message,
                            logprobs=logprobs,
                            finish_reason=None)
                        chunk = ChatCompletionStreamResponse(
                            id=request_id,
                            object=chunk_object_type,
                            created=created_time,
                            choices=[choice_data],
                            model=model_name)
                        if (request.stream_options
                                and request.stream_options.include_usage):
                            chunk.usage = None
                        data = chunk.model_dump_json(exclude_unset=True)
                        yield f"data: {data}\n\n"
                    else:
                        # Send the finish response for each request.n only once
                        prompt_tokens = len(res.prompt_token_ids)
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=i,
                            delta=delta_message,
                            logprobs=logprobs,
                            finish_reason=output.finish_reason,
                            stop_reason=output.stop_reason)
                        chunk = ChatCompletionStreamResponse(
                            id=request_id,
                            object=chunk_object_type,
                            created=created_time,
                            choices=[choice_data],
                            model=model_name)
                        if (request.stream_options
                                and request.stream_options.include_usage):
                            chunk.usage = None
                        data = chunk.model_dump_json(exclude_unset=True)
                        yield f"data: {data}\n\n"
                        finish_reason_sent[i] = True

            if (request.stream_options
                    and request.stream_options.include_usage):
                final_usage = UsageInfo(
                    prompt_tokens=prompt_tokens,
                    completion_tokens=previous_num_tokens[i],
                    total_tokens=prompt_tokens + previous_num_tokens[i],
                )

                final_usage_chunk = ChatCompletionStreamResponse(
                    id=request_id,
                    object=chunk_object_type,
                    created=created_time,
                    choices=[],
                    model=model_name,
                    usage=final_usage)
                final_usage_data = (final_usage_chunk.model_dump_json(
                    exclude_unset=True, exclude_none=True))
                yield f"data: {final_usage_data}\n\n"

        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            data = self.create_streaming_error_response(str(e))
            yield f"data: {data}\n\n"
        # Send the final done message after all response.n are finished
        yield "data: [DONE]\n\n"

    async def chat_completion_full_generator(
        self, request: ChatCompletionRequest, raw_request: Optional[Request],
        result_generator: AsyncIterator[RequestOutput], request_id: str,
        conversation: List[ConversationMessage]
    ) -> Union[ErrorResponse, ChatCompletionResponse]:

        model_name = self.served_model_names[0]
        created_time = int(time.time())
        final_res: Optional[RequestOutput] = None

        async for res in result_generator:
            if raw_request is not None and await raw_request.is_disconnected():
                # Abort the request if the client disconnects.
                await self.engine.abort(request_id)
                return self.create_error_response("Client disconnected")
            final_res = res
        assert final_res is not None

        choices: List[ChatCompletionResponseChoice] = []

        role = self.get_chat_request_role(request)
        for output in final_res.outputs:
            token_ids = output.token_ids
            out_logprobs = output.logprobs

            if request.logprobs and request.top_logprobs is not None:
                assert out_logprobs is not None, "Did not output logprobs"
                logprobs = self._create_chat_logprobs(
                    token_ids=token_ids,
                    top_logprobs=out_logprobs,
                    num_output_top_logprobs=request.top_logprobs,
                )
            else:
                logprobs = None

            if request.tool_choice and type(
                    request.tool_choice) is ChatCompletionNamedToolChoiceParam:
                message = ChatMessage(
                    role=role,
                    content="",
                    tool_calls=[
                        ToolCall(function=FunctionCall(
                            name=request.tool_choice.function.name,
                            arguments=output.text))
                    ])
            elif not request.tool_choice or request.tool_choice == "none":
                message = ChatMessage(role=role, content=output.text)

            choice_data = ChatCompletionResponseChoice(
                index=output.index,
                message=message,
                logprobs=logprobs,
                finish_reason=output.finish_reason,
                stop_reason=output.stop_reason)
            choices.append(choice_data)

        if request.echo:
            last_msg_content = ""
            if conversation and conversation[-1].get(
                    "content") and conversation[-1].get("role") == role:
                last_msg_content = conversation[-1]["content"]

            for choice in choices:
                full_message = last_msg_content + choice.message.content
                choice.message.content = full_message

        num_prompt_tokens = len(final_res.prompt_token_ids)
        num_generated_tokens = sum(
            len(output.token_ids) for output in final_res.outputs)
        usage = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )
        response = ChatCompletionResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=choices,
            usage=usage,
        )

        return response

    def _get_top_logprobs(
            self, logprobs: Dict[int, Logprob],
            top_logprobs: Optional[int]) -> List[ChatCompletionLogProb]:
        return [
            ChatCompletionLogProb(
                token=self._get_decoded_token(p[1], p[0]),
                logprob=max(p[1].logprob, -9999.0),
                bytes=list(
                    self._get_decoded_token(p[1],
                                            p[0]).encode("utf-8",
                                                         errors="replace")))
            for i, p in enumerate(logprobs.items())
            if top_logprobs and i < top_logprobs
        ]

    def _create_chat_logprobs(
        self,
        token_ids: GenericSequence[int],
        top_logprobs: GenericSequence[Optional[Dict[int, Logprob]]],
        num_output_top_logprobs: Optional[int] = None,
    ) -> ChatCompletionLogProbs:
        """Create OpenAI-style logprobs."""

        logprobs_content = []

        for i, token_id in enumerate(token_ids):
            step_top_logprobs = top_logprobs[i]
            if step_top_logprobs is None:
                logprobs_content.append(
                    ChatCompletionLogProbsContent(
                        token=self.tokenizer.decode(token_id),
                        bytes=list(
                            self.tokenizer.decode(token_id).encode(
                                "utf-8", errors="replace"))))
            else:
                logprobs_content.append(
                    ChatCompletionLogProbsContent(
                        token=step_top_logprobs[token_id].decoded_token,
                        logprob=max(step_top_logprobs[token_id].logprob,
                                    -9999.0),
                        bytes=list(
                            step_top_logprobs[token_id].decoded_token.encode(
                                "utf-8", errors="replace")),
                        top_logprobs=self._get_top_logprobs(
                            step_top_logprobs, num_output_top_logprobs)))

        return ChatCompletionLogProbs(content=logprobs_content)