Spaces:
Paused
Paused
File size: 11,253 Bytes
690332d 75da468 690332d 75da468 690332d 5491dc5 690332d 75da468 690332d 75da468 690332d 5491dc5 75da468 8f99309 75da468 8f99309 75da468 5491dc5 690332d 75da468 5491dc5 8f99309 690332d 5491dc5 75da468 5491dc5 75da468 690332d 75da468 690332d 5491dc5 690332d 8f99309 5491dc5 690332d 5491dc5 690332d 75da468 690332d 5491dc5 8f99309 5491dc5 8f99309 5491dc5 8f99309 5491dc5 8f99309 cf74192 690332d 5491dc5 690332d 5491dc5 75da468 8f99309 75da468 cf74192 690332d 75da468 690332d cf74192 690332d cf74192 75da468 5491dc5 690332d 5491dc5 75da468 5491dc5 8f99309 75da468 690332d 75da468 690332d 75da468 690332d 5491dc5 8f99309 5491dc5 75da468 5491dc5 75da468 5491dc5 690332d 5491dc5 690332d 75da468 690332d 75da468 5491dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import asyncio
import importlib
import inspect
import re
from contextlib import asynccontextmanager
from http import HTTPStatus
from typing import Optional, Set
import fastapi
import uvicorn
from fastapi import APIRouter, Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, Response, StreamingResponse
from prometheus_client import make_asgi_app
from starlette.routing import Mount
import vllm.envs as envs
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.cli_args import make_arg_parser
# yapf conflicts with isort for this block
# yapf: disable
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
DetokenizeRequest,
DetokenizeResponse,
EmbeddingRequest, ErrorResponse,
TokenizeRequest,
TokenizeResponse)
# yapf: enable
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from vllm.entrypoints.openai.serving_tokenization import (
OpenAIServingTokenization)
from vllm.logger import init_logger
from vllm.usage.usage_lib import UsageContext
from vllm.utils import FlexibleArgumentParser
from vllm.version import __version__ as VLLM_VERSION
TIMEOUT_KEEP_ALIVE = 5 # seconds
engine: AsyncLLMEngine
engine_args: AsyncEngineArgs
openai_serving_chat: OpenAIServingChat
openai_serving_completion: OpenAIServingCompletion
openai_serving_embedding: OpenAIServingEmbedding
openai_serving_tokenization: OpenAIServingTokenization
logger = init_logger('vllm.entrypoints.openai.api_server')
_running_tasks: Set[asyncio.Task] = set()
@asynccontextmanager
async def lifespan(app: fastapi.FastAPI):
async def _force_log():
while True:
await asyncio.sleep(10)
await engine.do_log_stats()
if not engine_args.disable_log_stats:
task = asyncio.create_task(_force_log())
_running_tasks.add(task)
task.add_done_callback(_running_tasks.remove)
yield
router = APIRouter()
def mount_metrics(app: fastapi.FastAPI):
# Add prometheus asgi middleware to route /metrics requests
metrics_route = Mount("/metrics", make_asgi_app())
# Workaround for 307 Redirect for /metrics
metrics_route.path_regex = re.compile('^/metrics(?P<path>.*)$')
app.routes.append(metrics_route)
@router.get("/health")
async def health() -> Response:
"""Health check."""
await openai_serving_chat.engine.check_health()
return Response(status_code=200)
@router.post("/tokenize")
async def tokenize(request: TokenizeRequest):
generator = await openai_serving_tokenization.create_tokenize(request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
else:
assert isinstance(generator, TokenizeResponse)
return JSONResponse(content=generator.model_dump())
@router.post("/detokenize")
async def detokenize(request: DetokenizeRequest):
generator = await openai_serving_tokenization.create_detokenize(request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
else:
assert isinstance(generator, DetokenizeResponse)
return JSONResponse(content=generator.model_dump())
@router.get("/api/v1/models")
async def show_available_models():
models = await openai_serving_completion.show_available_models()
return JSONResponse(content=models.model_dump())
@router.get("/version")
async def show_version():
ver = {"version": VLLM_VERSION}
return JSONResponse(content=ver)
@router.post("/api/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest,
raw_request: Request):
generator = await openai_serving_chat.create_chat_completion(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
if request.stream:
return StreamingResponse(content=generator,
media_type="text/event-stream")
else:
assert isinstance(generator, ChatCompletionResponse)
return JSONResponse(content=generator.model_dump())
@router.post("/api/v1/completions")
async def create_completion(request: CompletionRequest, raw_request: Request):
generator = await openai_serving_completion.create_completion(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
if request.stream:
return StreamingResponse(content=generator,
media_type="text/event-stream")
else:
return JSONResponse(content=generator.model_dump())
@router.post("/api/v1/embeddings")
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
generator = await openai_serving_embedding.create_embedding(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
else:
return JSONResponse(content=generator.model_dump())
def build_app(args):
app = fastapi.FastAPI(lifespan=lifespan)
app.include_router(router)
app.root_path = args.root_path
mount_metrics(app)
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(_, exc):
err = openai_serving_chat.create_error_response(message=str(exc))
return JSONResponse(err.model_dump(),
status_code=HTTPStatus.BAD_REQUEST)
if token := envs.VLLM_API_KEY or args.api_key:
@app.middleware("http")
async def authentication(request: Request, call_next):
root_path = "" if args.root_path is None else args.root_path
if request.method == "OPTIONS":
return await call_next(request)
if not request.url.path.startswith(f"{root_path}/v1"):
return await call_next(request)
if request.headers.get("Authorization") != "Bearer " + token:
return JSONResponse(content={"error": "Unauthorized"},
status_code=401)
return await call_next(request)
for middleware in args.middleware:
module_path, object_name = middleware.rsplit(".", 1)
imported = getattr(importlib.import_module(module_path), object_name)
if inspect.isclass(imported):
app.add_middleware(imported)
elif inspect.iscoroutinefunction(imported):
app.middleware("http")(imported)
else:
raise ValueError(f"Invalid middleware {middleware}. "
f"Must be a function or a class.")
return app
def run_server(args, llm_engine=None):
app = build_app(args)
logger.info("vLLM API server version %s", VLLM_VERSION)
logger.info("args: %s", args)
if args.served_model_name is not None:
served_model_names = args.served_model_name
else:
served_model_names = [args.model]
global engine, engine_args
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = (llm_engine
if llm_engine is not None else AsyncLLMEngine.from_engine_args(
engine_args, usage_context=UsageContext.OPENAI_API_SERVER))
event_loop: Optional[asyncio.AbstractEventLoop]
try:
event_loop = asyncio.get_running_loop()
except RuntimeError:
event_loop = None
if event_loop is not None and event_loop.is_running():
# If the current is instanced by Ray Serve,
# there is already a running event loop
model_config = event_loop.run_until_complete(engine.get_model_config())
else:
# When using single vLLM without engine_use_ray
model_config = asyncio.run(engine.get_model_config())
if args.disable_log_requests:
request_logger = None
else:
request_logger = RequestLogger(max_log_len=args.max_log_len)
global openai_serving_chat
global openai_serving_completion
global openai_serving_embedding
global openai_serving_tokenization
openai_serving_chat = OpenAIServingChat(
engine,
model_config,
served_model_names,
args.response_role,
lora_modules=args.lora_modules,
prompt_adapters=args.prompt_adapters,
request_logger=request_logger,
chat_template=args.chat_template,
)
openai_serving_completion = OpenAIServingCompletion(
engine,
model_config,
served_model_names,
lora_modules=args.lora_modules,
prompt_adapters=args.prompt_adapters,
request_logger=request_logger,
)
openai_serving_embedding = OpenAIServingEmbedding(
engine,
model_config,
served_model_names,
request_logger=request_logger,
)
openai_serving_tokenization = OpenAIServingTokenization(
engine,
model_config,
served_model_names,
lora_modules=args.lora_modules,
request_logger=request_logger,
chat_template=args.chat_template,
)
app.root_path = args.root_path
logger.info("Available routes are:")
for route in app.routes:
if not hasattr(route, 'methods'):
continue
methods = ', '.join(route.methods)
logger.info("Route: %s, Methods: %s", route.path, methods)
uvicorn.run(app,
host=args.host,
port=args.port,
log_level=args.uvicorn_log_level,
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile,
ssl_ca_certs=args.ssl_ca_certs,
ssl_cert_reqs=args.ssl_cert_reqs)
if __name__ == "__main__":
# NOTE(simon):
# This section should be in sync with vllm/scripts.py for CLI entrypoints.
parser = FlexibleArgumentParser(
description="vLLM OpenAI-Compatible RESTful API server.")
parser = make_arg_parser(parser)
args = parser.parse_args()
run_server(args) |