import codecs import time from dataclasses import dataclass from typing import (AsyncGenerator, AsyncIterator, Dict, Iterable, List, Optional) from typing import Sequence as GenericSequence from typing import TypedDict, Union, cast, final from fastapi import Request from openai.types.chat import ChatCompletionContentPartTextParam from vllm.config import ModelConfig from vllm.engine.async_llm_engine import AsyncLLMEngine from vllm.entrypoints.openai.protocol import ( ChatCompletionContentPartParam, ChatCompletionLogProb, ChatCompletionLogProbs, ChatCompletionLogProbsContent, ChatCompletionMessageParam, ChatCompletionNamedToolChoiceParam, ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice, ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse, FunctionCall, ToolCall, UsageInfo) from vllm.entrypoints.openai.serving_engine import (LoRAModulePath, OpenAIServing) from vllm.logger import init_logger from vllm.model_executor.guided_decoding import ( get_guided_decoding_logits_processor) from vllm.outputs import RequestOutput from vllm.sequence import Logprob from vllm.utils import random_uuid logger = init_logger(__name__) @final # So that it should be compatible with Dict[str, str] class ConversationMessage(TypedDict): role: str content: str @dataclass(frozen=True) class ChatMessageParseResult: messages: List[ConversationMessage] class OpenAIServingChat(OpenAIServing): def __init__(self, engine: AsyncLLMEngine, model_config: ModelConfig, served_model_names: List[str], response_role: str, lora_modules: Optional[List[LoRAModulePath]] = None, chat_template: Optional[str] = None): super().__init__(engine=engine, model_config=model_config, served_model_names=served_model_names, lora_modules=lora_modules) self.response_role = response_role self._load_chat_template(chat_template) def _load_chat_template(self, chat_template: Optional[str]): tokenizer = self.tokenizer if chat_template is not None: try: with open(chat_template, "r") as f: tokenizer.chat_template = f.read() except OSError as e: JINJA_CHARS = "{}\n" if not any(c in chat_template for c in JINJA_CHARS): msg = (f"The supplied chat template ({chat_template}) " f"looks like a file path, but it failed to be " f"opened. Reason: {e}") raise ValueError(msg) from e # If opening a file fails, set chat template to be args to # ensure we decode so our escape are interpreted correctly tokenizer.chat_template = codecs.decode( chat_template, "unicode_escape") logger.info("Using supplied chat template:\n%s", tokenizer.chat_template) elif tokenizer.chat_template is not None: logger.info("Using default chat template:\n%s", tokenizer.chat_template) else: logger.warning( "No chat template provided. Chat API will not work.") def _parse_chat_message_content_parts( self, role: str, parts: Iterable[ChatCompletionContentPartParam], ) -> ChatMessageParseResult: texts: List[str] = [] for _, part in enumerate(parts): part_type = part["type"] if part_type == "text": text = cast(ChatCompletionContentPartTextParam, part)["text"] texts.append(text) else: raise NotImplementedError(f"Unknown part type: {part_type}") messages = [ConversationMessage(role=role, content="\n".join(texts))] return ChatMessageParseResult(messages=messages) def _parse_chat_message_content( self, message: ChatCompletionMessageParam, ) -> ChatMessageParseResult: role = message["role"] content = message.get("content") if content is None: return ChatMessageParseResult(messages=[]) if isinstance(content, str): messages = [ConversationMessage(role=role, content=content)] return ChatMessageParseResult(messages=messages) return self._parse_chat_message_content_parts(role, content) async def create_chat_completion( self, request: ChatCompletionRequest, raw_request: Optional[Request] = None ) -> Union[ErrorResponse, AsyncGenerator[str, None], ChatCompletionResponse]: """Completion API similar to OpenAI's API. See https://platform.openai.com/docs/api-reference/chat/create for the API specification. This API mimics the OpenAI ChatCompletion API. NOTE: Currently we do not support the following feature: - function_call (Users should implement this by themselves) """ error_check_ret = await self._check_model(request) if error_check_ret is not None: return error_check_ret try: conversation: List[ConversationMessage] = [] for msg in request.messages: parsed_msg = self._parse_chat_message_content(msg) conversation.extend(parsed_msg.messages) prompt = self.tokenizer.apply_chat_template( conversation=conversation, tokenize=False, add_generation_prompt=request.add_generation_prompt, ) except Exception as e: logger.error("Error in applying chat template from request: %s", e) return self.create_error_response(str(e)) request_id = f"cmpl-{random_uuid()}" try: # Tokenize/detokenize depending on prompt format (string/token list) prompt_ids, prompt_text = self._validate_prompt_and_tokenize( request, prompt=prompt, add_special_tokens=request.add_special_tokens) sampling_params = request.to_sampling_params() lora_request = self._maybe_get_lora(request) decoding_config = await self.engine.get_decoding_config() guided_decoding_backend = request.guided_decoding_backend \ or decoding_config.guided_decoding_backend guided_decode_logits_processor = ( await get_guided_decoding_logits_processor( guided_decoding_backend, request, await self.engine.get_tokenizer())) if guided_decode_logits_processor: if sampling_params.logits_processors is None: sampling_params.logits_processors = [] sampling_params.logits_processors.append( guided_decode_logits_processor) except ValueError as e: return self.create_error_response(str(e)) result_generator = self.engine.generate( { "prompt": prompt_text, "prompt_token_ids": prompt_ids }, sampling_params, request_id, lora_request, ) # Streaming response if request.stream: return self.chat_completion_stream_generator( request, result_generator, request_id, conversation) else: try: return await self.chat_completion_full_generator( request, raw_request, result_generator, request_id, conversation) except ValueError as e: # TODO: Use a vllm-specific Validation Error return self.create_error_response(str(e)) def get_chat_request_role(self, request: ChatCompletionRequest) -> str: if request.add_generation_prompt: return self.response_role else: return request.messages[-1]["role"] async def chat_completion_stream_generator( self, request: ChatCompletionRequest, result_generator: AsyncIterator[RequestOutput], request_id: str, conversation: List[ConversationMessage] ) -> AsyncGenerator[str, None]: model_name = self.served_model_names[0] created_time = int(time.time()) chunk_object_type = "chat.completion.chunk" first_iteration = True # Send response for each token for each request.n (index) assert request.n is not None previous_texts = [""] * request.n previous_num_tokens = [0] * request.n finish_reason_sent = [False] * request.n try: async for res in result_generator: # We need to do it here, because if there are exceptions in # the result_generator, it needs to be sent as the FIRST # response (by the try...catch). if first_iteration: # Send first response for each request.n (index) with # the role role = self.get_chat_request_role(request) for i in range(request.n): choice_data = ChatCompletionResponseStreamChoice( index=i, delta=DeltaMessage(role=role), logprobs=None, finish_reason=None) chunk = ChatCompletionStreamResponse( id=request_id, object=chunk_object_type, created=created_time, choices=[choice_data], model=model_name) data = chunk.model_dump_json(exclude_unset=True) yield f"data: {data}\n\n" # Send response to echo the input portion of the # last message if request.echo: last_msg_content = "" if conversation and conversation[-1].get( "content") and conversation[-1].get( "role") == role: last_msg_content = conversation[-1]["content"] if last_msg_content: for i in range(request.n): choice_data = ( ChatCompletionResponseStreamChoice( index=i, delta=DeltaMessage( content=last_msg_content), finish_reason=None)) chunk = ChatCompletionStreamResponse( id=request_id, object=chunk_object_type, created=created_time, choices=[choice_data], logprobs=None, model=model_name) data = chunk.model_dump_json( exclude_unset=True) yield f"data: {data}\n\n" first_iteration = False for output in res.outputs: i = output.index if finish_reason_sent[i]: continue delta_token_ids = output.token_ids[previous_num_tokens[i]:] top_logprobs = output.logprobs[ previous_num_tokens[i]:] if output.logprobs else None if request.logprobs: logprobs = self._create_chat_logprobs( token_ids=delta_token_ids, top_logprobs=top_logprobs, num_output_top_logprobs=request.top_logprobs, ) else: logprobs = None delta_text = output.text[len(previous_texts[i]):] previous_texts[i] = output.text previous_num_tokens[i] = len(output.token_ids) if request.tool_choice and type( request.tool_choice ) is ChatCompletionNamedToolChoiceParam: delta_message = DeltaMessage(tool_calls=[ ToolCall(function=FunctionCall( name=request.tool_choice.function.name, arguments=delta_text)) ]) else: delta_message = DeltaMessage(content=delta_text) if output.finish_reason is None: # Send token-by-token response for each request.n choice_data = ChatCompletionResponseStreamChoice( index=i, delta=delta_message, logprobs=logprobs, finish_reason=None) chunk = ChatCompletionStreamResponse( id=request_id, object=chunk_object_type, created=created_time, choices=[choice_data], model=model_name) data = chunk.model_dump_json(exclude_unset=True) yield f"data: {data}\n\n" else: # Send the finish response for each request.n only once prompt_tokens = len(res.prompt_token_ids) final_usage = UsageInfo( prompt_tokens=prompt_tokens, completion_tokens=previous_num_tokens[i], total_tokens=prompt_tokens + previous_num_tokens[i], ) choice_data = ChatCompletionResponseStreamChoice( index=i, delta=delta_message, logprobs=logprobs, finish_reason=output.finish_reason, stop_reason=output.stop_reason) chunk = ChatCompletionStreamResponse( id=request_id, object=chunk_object_type, created=created_time, choices=[choice_data], model=model_name) if final_usage is not None: chunk.usage = final_usage data = chunk.model_dump_json(exclude_unset=True, exclude_none=True) yield f"data: {data}\n\n" finish_reason_sent[i] = True except ValueError as e: # TODO: Use a vllm-specific Validation Error data = self.create_streaming_error_response(str(e)) yield f"data: {data}\n\n" # Send the final done message after all response.n are finished yield "data: [DONE]\n\n" async def chat_completion_full_generator( self, request: ChatCompletionRequest, raw_request: Optional[Request], result_generator: AsyncIterator[RequestOutput], request_id: str, conversation: List[ConversationMessage] ) -> Union[ErrorResponse, ChatCompletionResponse]: model_name = self.served_model_names[0] created_time = int(time.time()) final_res: Optional[RequestOutput] = None async for res in result_generator: if raw_request is not None and await raw_request.is_disconnected(): # Abort the request if the client disconnects. await self.engine.abort(request_id) return self.create_error_response("Client disconnected") final_res = res assert final_res is not None choices = [] role = self.get_chat_request_role(request) for output in final_res.outputs: token_ids = output.token_ids top_logprobs = output.logprobs if request.logprobs: logprobs = self._create_chat_logprobs( token_ids=token_ids, top_logprobs=top_logprobs, num_output_top_logprobs=request.top_logprobs, ) else: logprobs = None if request.tool_choice and type( request.tool_choice) is ChatCompletionNamedToolChoiceParam: message = ChatMessage( role=role, content="", tool_calls=[ ToolCall(function=FunctionCall( name=request.tool_choice.function.name, arguments=output.text)) ]) elif not request.tool_choice or request.tool_choice == "none": message = ChatMessage(role=role, content=output.text) choice_data = ChatCompletionResponseChoice( index=output.index, message=message, logprobs=logprobs, finish_reason=output.finish_reason, stop_reason=output.stop_reason) choices.append(choice_data) if request.echo: last_msg_content = "" if conversation and conversation[-1].get( "content") and conversation[-1].get("role") == role: last_msg_content = conversation[-1]["content"] for choice in choices: full_message = last_msg_content + choice.message.content choice.message.content = full_message num_prompt_tokens = len(final_res.prompt_token_ids) num_generated_tokens = sum( len(output.token_ids) for output in final_res.outputs) usage = UsageInfo( prompt_tokens=num_prompt_tokens, completion_tokens=num_generated_tokens, total_tokens=num_prompt_tokens + num_generated_tokens, ) response = ChatCompletionResponse( id=request_id, created=created_time, model=model_name, choices=choices, usage=usage, ) return response def _get_top_logprobs( self, logprobs: Dict[int, Logprob], top_logprobs: Optional[int]) -> List[ChatCompletionLogProb]: return [ ChatCompletionLogProb( token=self._get_decoded_token(p[1], p[0]), logprob=max(p[1].logprob, -9999.0), bytes=list( self._get_decoded_token(p[1], p[0]).encode("utf-8", errors="replace"))) for i, p in enumerate(logprobs.items()) if top_logprobs and i < top_logprobs ] def _create_chat_logprobs( self, token_ids: GenericSequence[int], top_logprobs: GenericSequence[Optional[Dict[int, Logprob]]], num_output_top_logprobs: Optional[int] = None, ) -> ChatCompletionLogProbs: """Create OpenAI-style logprobs.""" logprobs_content = [] for i, token_id in enumerate(token_ids): step_top_logprobs = top_logprobs[i] if step_top_logprobs is None: logprobs_content.append( ChatCompletionLogProbsContent( token=self.tokenizer.decode(token_id), bytes=list( self.tokenizer.decode(token_id).encode( "utf-8", errors="replace")))) else: logprobs_content.append( ChatCompletionLogProbsContent( token=step_top_logprobs[token_id].decoded_token, logprob=max(step_top_logprobs[token_id].logprob, -9999.0), bytes=list( step_top_logprobs[token_id].decoded_token.encode( "utf-8", errors="replace")), top_logprobs=self._get_top_logprobs( step_top_logprobs, num_output_top_logprobs))) return ChatCompletionLogProbs(content=logprobs_content)