File size: 5,888 Bytes
f9e4a95
 
 
 
 
 
 
 
 
 
 
9267ec1
 
f9e4a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17145cb
 
 
 
f9e4a95
 
17145cb
f9e4a95
17145cb
f9e4a95
 
 
 
 
 
 
 
 
 
 
17145cb
 
f9e4a95
 
 
 
 
 
9267ec1
 
f9e4a95
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
Using as reference:
- https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512
- https://huggingface.co/spaces/chansung/segformer-tf-transformers/blob/main/app.py
- https://huggingface.co/facebook/detr-resnet-50-panoptic
"""

from transformers import DetrFeatureExtractor, DetrForSegmentation
from PIL import Image
import gradio as gr
import numpy as np
import torch
import torchvision

# Returns a list with a color per ADE class (150 classes)
# from https://huggingface.co/spaces/chansung/segformer-tf-transformers/blob/main/app.py
def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [120, 120, 120],
        [180, 120, 120],
        [6, 230, 230],
        [80, 50, 50],
        [4, 200, 3],
        [120, 120, 80],
        [140, 140, 140],
        [204, 5, 255],
        [230, 230, 230],
        [4, 250, 7],
        [224, 5, 255],
        [235, 255, 7],
        [150, 5, 61],
        [120, 120, 70],
        [8, 255, 51],
        [255, 6, 82],
        [143, 255, 140],
        [204, 255, 4],
        [255, 51, 7],
        [204, 70, 3],
        [0, 102, 200],
        [61, 230, 250],
        [255, 6, 51],
        [11, 102, 255],
        [255, 7, 71],
        [255, 9, 224],
        [9, 7, 230],
        [220, 220, 220],
        [255, 9, 92],
        [112, 9, 255],
        [8, 255, 214],
        [7, 255, 224],
        [255, 184, 6],
        [10, 255, 71],
        [255, 41, 10],
        [7, 255, 255],
        [224, 255, 8],
        [102, 8, 255],
        [255, 61, 6],
        [255, 194, 7],
        [255, 122, 8],
        [0, 255, 20],
        [255, 8, 41],
        [255, 5, 153],
        [6, 51, 255],
        [235, 12, 255],
        [160, 150, 20],
        [0, 163, 255],
        [140, 140, 140],
        [250, 10, 15],
        [20, 255, 0],
        [31, 255, 0],
        [255, 31, 0],
        [255, 224, 0],
        [153, 255, 0],
        [0, 0, 255],
        [255, 71, 0],
        [0, 235, 255],
        [0, 173, 255],
        [31, 0, 255],
        [11, 200, 200],
        [255, 82, 0],
        [0, 255, 245],
        [0, 61, 255],
        [0, 255, 112],
        [0, 255, 133],
        [255, 0, 0],
        [255, 163, 0],
        [255, 102, 0],
        [194, 255, 0],
        [0, 143, 255],
        [51, 255, 0],
        [0, 82, 255],
        [0, 255, 41],
        [0, 255, 173],
        [10, 0, 255],
        [173, 255, 0],
        [0, 255, 153],
        [255, 92, 0],
        [255, 0, 255],
        [255, 0, 245],
        [255, 0, 102],
        [255, 173, 0],
        [255, 0, 20],
        [255, 184, 184],
        [0, 31, 255],
        [0, 255, 61],
        [0, 71, 255],
        [255, 0, 204],
        [0, 255, 194],
        [0, 255, 82],
        [0, 10, 255],
        [0, 112, 255],
        [51, 0, 255],
        [0, 194, 255],
        [0, 122, 255],
        [0, 255, 163],
        [255, 153, 0],
        [0, 255, 10],
        [255, 112, 0],
        [143, 255, 0],
        [82, 0, 255],
        [163, 255, 0],
        [255, 235, 0],
        [8, 184, 170],
        [133, 0, 255],
        [0, 255, 92],
        [184, 0, 255],
        [255, 0, 31],
        [0, 184, 255],
        [0, 214, 255],
        [255, 0, 112],
        [92, 255, 0],
        [0, 224, 255],
        [112, 224, 255],
        [70, 184, 160],
        [163, 0, 255],
        [153, 0, 255],
        [71, 255, 0],
        [255, 0, 163],
        [255, 204, 0],
        [255, 0, 143],
        [0, 255, 235],
        [133, 255, 0],
        [255, 0, 235],
        [245, 0, 255],
        [255, 0, 122],
        [255, 245, 0],
        [10, 190, 212],
        [214, 255, 0],
        [0, 204, 255],
        [20, 0, 255],
        [255, 255, 0],
        [0, 153, 255],
        [0, 41, 255],
        [0, 255, 204],
        [41, 0, 255],
        [41, 255, 0],
        [173, 0, 255],
        [0, 245, 255],
        [71, 0, 255],
        [122, 0, 255],
        [0, 255, 184],
        [0, 92, 255],
        [184, 255, 0],
        [0, 133, 255],
        [255, 214, 0],
        [25, 194, 194],
        [102, 255, 0],
        [92, 0, 255],
    ]

feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50-panoptic')
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-50-panoptic')

# gradio components
input = gr.inputs.Image()
output = gr.outputs.Image()

def predict_animal_mask(im):
    image = Image.fromarray(im) # im: numpy array 3d: 480, 640, 3: to PIL Image
    image = image.resize((200,200)) #  PIL image # could I upsample output instead? better?

    inputs = feature_extractor(images=image, return_tensors="pt") #pt=Pytorch, tf=TensorFlow
    outputs = model(**inputs)
    logits = outputs.logits # torch.Size([1, 100, 251])
    bboxes = outputs.pred_boxes
    masks = outputs.pred_masks # torch.Size([1, 100, 200, 200])

    # postprocess the image
    label_per_pixel = torch.argmax(masks.squeeze(),dim=0).detach().numpy()
    color_mask = np.zeros(image.size+(3,))
    for lbl, color in enumerate(ade_palette()):
        color_mask[label_per_pixel==lbl,:] = color

    # Show image + mask
    pred_img = np.array(image.convert('RGB'))*0.5 + color_mask*0.5
    pred_img = pred_img.astype(np.uint8)   

    return pred_img


####################################################
# Create user interface and launch
gr.Interface(predict_animal_mask, 
    inputs = input, 
    outputs = output,
    title = 'Animals* segmentation in images',
    description = "An animal* segmentation image webapp using DETR (End-to-End Object Detection) model with ResNet-50 backbone").launch()


####################################
# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
# image = Image.open(requests.get(url, stream=True).raw)

# inputs = feature_extractor(images=image, return_tensors="pt")
# outputs = model(**inputs)
# logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)