Spaces:
Runtime error
Runtime error
File size: 5,902 Bytes
f9e4a95 9267ec1 f9e4a95 17145cb f9e4a95 17145cb f9e4a95 17145cb f9e4a95 4f1cf17 f9e4a95 17145cb f9e4a95 9267ec1 f9e4a95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
"""
Using as reference:
- https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512
- https://huggingface.co/spaces/chansung/segformer-tf-transformers/blob/main/app.py
- https://huggingface.co/facebook/detr-resnet-50-panoptic
"""
from transformers import DetrFeatureExtractor, DetrForSegmentation
from PIL import Image
import gradio as gr
import numpy as np
import torch
import torchvision
# Returns a list with a color per ADE class (150 classes)
# from https://huggingface.co/spaces/chansung/segformer-tf-transformers/blob/main/app.py
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[120, 120, 120],
[180, 120, 120],
[6, 230, 230],
[80, 50, 50],
[4, 200, 3],
[120, 120, 80],
[140, 140, 140],
[204, 5, 255],
[230, 230, 230],
[4, 250, 7],
[224, 5, 255],
[235, 255, 7],
[150, 5, 61],
[120, 120, 70],
[8, 255, 51],
[255, 6, 82],
[143, 255, 140],
[204, 255, 4],
[255, 51, 7],
[204, 70, 3],
[0, 102, 200],
[61, 230, 250],
[255, 6, 51],
[11, 102, 255],
[255, 7, 71],
[255, 9, 224],
[9, 7, 230],
[220, 220, 220],
[255, 9, 92],
[112, 9, 255],
[8, 255, 214],
[7, 255, 224],
[255, 184, 6],
[10, 255, 71],
[255, 41, 10],
[7, 255, 255],
[224, 255, 8],
[102, 8, 255],
[255, 61, 6],
[255, 194, 7],
[255, 122, 8],
[0, 255, 20],
[255, 8, 41],
[255, 5, 153],
[6, 51, 255],
[235, 12, 255],
[160, 150, 20],
[0, 163, 255],
[140, 140, 140],
[250, 10, 15],
[20, 255, 0],
[31, 255, 0],
[255, 31, 0],
[255, 224, 0],
[153, 255, 0],
[0, 0, 255],
[255, 71, 0],
[0, 235, 255],
[0, 173, 255],
[31, 0, 255],
[11, 200, 200],
[255, 82, 0],
[0, 255, 245],
[0, 61, 255],
[0, 255, 112],
[0, 255, 133],
[255, 0, 0],
[255, 163, 0],
[255, 102, 0],
[194, 255, 0],
[0, 143, 255],
[51, 255, 0],
[0, 82, 255],
[0, 255, 41],
[0, 255, 173],
[10, 0, 255],
[173, 255, 0],
[0, 255, 153],
[255, 92, 0],
[255, 0, 255],
[255, 0, 245],
[255, 0, 102],
[255, 173, 0],
[255, 0, 20],
[255, 184, 184],
[0, 31, 255],
[0, 255, 61],
[0, 71, 255],
[255, 0, 204],
[0, 255, 194],
[0, 255, 82],
[0, 10, 255],
[0, 112, 255],
[51, 0, 255],
[0, 194, 255],
[0, 122, 255],
[0, 255, 163],
[255, 153, 0],
[0, 255, 10],
[255, 112, 0],
[143, 255, 0],
[82, 0, 255],
[163, 255, 0],
[255, 235, 0],
[8, 184, 170],
[133, 0, 255],
[0, 255, 92],
[184, 0, 255],
[255, 0, 31],
[0, 184, 255],
[0, 214, 255],
[255, 0, 112],
[92, 255, 0],
[0, 224, 255],
[112, 224, 255],
[70, 184, 160],
[163, 0, 255],
[153, 0, 255],
[71, 255, 0],
[255, 0, 163],
[255, 204, 0],
[255, 0, 143],
[0, 255, 235],
[133, 255, 0],
[255, 0, 235],
[245, 0, 255],
[255, 0, 122],
[255, 245, 0],
[10, 190, 212],
[214, 255, 0],
[0, 204, 255],
[20, 0, 255],
[255, 255, 0],
[0, 153, 255],
[0, 41, 255],
[0, 255, 204],
[41, 0, 255],
[41, 255, 0],
[173, 0, 255],
[0, 245, 255],
[71, 0, 255],
[122, 0, 255],
[0, 255, 184],
[0, 92, 255],
[184, 255, 0],
[0, 133, 255],
[255, 214, 0],
[25, 194, 194],
[102, 255, 0],
[92, 0, 255],
]
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50-panoptic')
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-50-panoptic')
# gradio components
input = gr.inputs.Image()
output = gr.outputs.Image()
def predict_animal_mask(im):
image = Image.fromarray(im) # im: numpy array 3d: 480, 640, 3: to PIL Image
image = image.resize((200,200)) # PIL image # could I upsample output instead? better?
inputs = feature_extractor(images=image, return_tensors="pt") #pt=Pytorch, tf=TensorFlow
outputs = model(**inputs)
logits = outputs.logits # torch.Size([1, 100, 251])
bboxes = outputs.pred_boxes
masks = outputs.pred_masks # torch.Size([1, 100, 200, 200])
# postprocess the mask (numpy arrays)
label_per_pixel = torch.argmax(masks.squeeze(),dim=0).detach().numpy()
color_mask = np.zeros(image.size+(3,))
for lbl, color in enumerate(ade_palette()):
color_mask[label_per_pixel==lbl,:] = color
# Show image + mask
pred_img = np.array(image.convert('RGB'))*0.5 + color_mask*0.5
pred_img = pred_img.astype(np.uint8)
return pred_img
####################################################
# Create user interface and launch
gr.Interface(predict_animal_mask,
inputs = input,
outputs = output,
title = 'Animals* segmentation in images',
description = "An animal* segmentation image webapp using DETR (End-to-End Object Detection) model with ResNet-50 backbone").launch()
####################################
# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
# image = Image.open(requests.get(url, stream=True).raw)
# inputs = feature_extractor(images=image, return_tensors="pt")
# outputs = model(**inputs)
# logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|