File size: 7,390 Bytes
f9e4a95
 
 
 
 
562224f
 
 
 
912be9c
 
562224f
 
 
f9e4a95
 
 
 
 
 
9267ec1
 
f9e4a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562224f
f9e4a95
562224f
912be9c
17145cb
 
 
562224f
 
 
 
f9e4a95
562224f
 
 
 
912be9c
 
 
f9e4a95
4f1cf17
562224f
f9e4a95
 
 
 
 
 
 
 
17145cb
 
562224f
 
 
 
 
 
 
912be9c
 
562224f
 
f9e4a95
 
 
 
912be9c
 
 
 
f9e4a95
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""
Using as reference:
- https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512
- https://huggingface.co/spaces/chansung/segformer-tf-transformers/blob/main/app.py
- https://huggingface.co/facebook/detr-resnet-50-panoptic
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/

https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_panoptic_segmentation_minimal_example_(with_DetrFeatureExtractor).ipynb

https://arxiv.org/abs/2005.12872

Additions
- add shown labels as strings
- show only animal masks (ask an nlp model?)
"""

from transformers import DetrFeatureExtractor, DetrForSegmentation
from PIL import Image
import gradio as gr
import numpy as np
import torch
import torchvision

# Returns a list with a color per ADE class (150 classes)
# from https://huggingface.co/spaces/chansung/segformer-tf-transformers/blob/main/app.py
def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [120, 120, 120],
        [180, 120, 120],
        [6, 230, 230],
        [80, 50, 50],
        [4, 200, 3],
        [120, 120, 80],
        [140, 140, 140],
        [204, 5, 255],
        [230, 230, 230],
        [4, 250, 7],
        [224, 5, 255],
        [235, 255, 7],
        [150, 5, 61],
        [120, 120, 70],
        [8, 255, 51],
        [255, 6, 82],
        [143, 255, 140],
        [204, 255, 4],
        [255, 51, 7],
        [204, 70, 3],
        [0, 102, 200],
        [61, 230, 250],
        [255, 6, 51],
        [11, 102, 255],
        [255, 7, 71],
        [255, 9, 224],
        [9, 7, 230],
        [220, 220, 220],
        [255, 9, 92],
        [112, 9, 255],
        [8, 255, 214],
        [7, 255, 224],
        [255, 184, 6],
        [10, 255, 71],
        [255, 41, 10],
        [7, 255, 255],
        [224, 255, 8],
        [102, 8, 255],
        [255, 61, 6],
        [255, 194, 7],
        [255, 122, 8],
        [0, 255, 20],
        [255, 8, 41],
        [255, 5, 153],
        [6, 51, 255],
        [235, 12, 255],
        [160, 150, 20],
        [0, 163, 255],
        [140, 140, 140],
        [250, 10, 15],
        [20, 255, 0],
        [31, 255, 0],
        [255, 31, 0],
        [255, 224, 0],
        [153, 255, 0],
        [0, 0, 255],
        [255, 71, 0],
        [0, 235, 255],
        [0, 173, 255],
        [31, 0, 255],
        [11, 200, 200],
        [255, 82, 0],
        [0, 255, 245],
        [0, 61, 255],
        [0, 255, 112],
        [0, 255, 133],
        [255, 0, 0],
        [255, 163, 0],
        [255, 102, 0],
        [194, 255, 0],
        [0, 143, 255],
        [51, 255, 0],
        [0, 82, 255],
        [0, 255, 41],
        [0, 255, 173],
        [10, 0, 255],
        [173, 255, 0],
        [0, 255, 153],
        [255, 92, 0],
        [255, 0, 255],
        [255, 0, 245],
        [255, 0, 102],
        [255, 173, 0],
        [255, 0, 20],
        [255, 184, 184],
        [0, 31, 255],
        [0, 255, 61],
        [0, 71, 255],
        [255, 0, 204],
        [0, 255, 194],
        [0, 255, 82],
        [0, 10, 255],
        [0, 112, 255],
        [51, 0, 255],
        [0, 194, 255],
        [0, 122, 255],
        [0, 255, 163],
        [255, 153, 0],
        [0, 255, 10],
        [255, 112, 0],
        [143, 255, 0],
        [82, 0, 255],
        [163, 255, 0],
        [255, 235, 0],
        [8, 184, 170],
        [133, 0, 255],
        [0, 255, 92],
        [184, 0, 255],
        [255, 0, 31],
        [0, 184, 255],
        [0, 214, 255],
        [255, 0, 112],
        [92, 255, 0],
        [0, 224, 255],
        [112, 224, 255],
        [70, 184, 160],
        [163, 0, 255],
        [153, 0, 255],
        [71, 255, 0],
        [255, 0, 163],
        [255, 204, 0],
        [255, 0, 143],
        [0, 255, 235],
        [133, 255, 0],
        [255, 0, 235],
        [245, 0, 255],
        [255, 0, 122],
        [255, 245, 0],
        [10, 190, 212],
        [214, 255, 0],
        [0, 204, 255],
        [20, 0, 255],
        [255, 255, 0],
        [0, 153, 255],
        [0, 41, 255],
        [0, 255, 204],
        [41, 0, 255],
        [41, 255, 0],
        [173, 0, 255],
        [0, 245, 255],
        [71, 0, 255],
        [122, 0, 255],
        [0, 255, 184],
        [0, 92, 255],
        [184, 255, 0],
        [0, 133, 255],
        [255, 214, 0],
        [25, 194, 194],
        [102, 255, 0],
        [92, 0, 255],
    ]
                                           

def predict_animal_mask(im,
                        gr_slider_confidence):
    image = Image.fromarray(im) # im: numpy array 3d: 480, 640, 3: to PIL Image
    image = image.resize((200,200)) #  PIL image # could I upsample output instead? better?

    # encoding is a dict with pixel_values and pixel_mask
    encoding = feature_extractor(images=image, return_tensors="pt") #pt=Pytorch, tf=TensorFlow
    outputs = model(**encoding) # odict with keys: ['logits', 'pred_boxes', 'pred_masks', 'last_hidden_state', 'encoder_last_hidden_state']
    logits = outputs.logits # torch.Size([1, 100, 251]); why 251?
    bboxes = outputs.pred_boxes
    masks = outputs.pred_masks # torch.Size([1, 100, 200, 200]); for every pixel, score in each of the 100 classes? there is a mask per class

    # keep only the masks with high confidence?--------------------------------
    # compute the prob per mask (i.e., class), excluding the "no-object" class (the last one)
    prob_per_query = outputs.logits.softmax(-1)[..., :-1].max(-1)[0] # why logits last dim 251?
    # threshold the confidence
    keep = prob_per_query > gr_slider_confidence/100.0

    # postprocess the mask (numpy arrays)
    label_per_pixel = torch.argmax(masks[keep].squeeze(),dim=0).detach().numpy() # from the masks per class, select the highest per pixel
    color_mask = np.zeros(image.size+(3,))
    for lbl, color in enumerate(ade_palette()):
        color_mask[label_per_pixel==lbl,:] = color

    # Show image + mask
    pred_img = np.array(image.convert('RGB'))*0.5 + color_mask*0.5
    pred_img = pred_img.astype(np.uint8)   

    return pred_img

#######################################
# get models from hugging face
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50-panoptic')
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-50-panoptic')

# gradio components -inputs
gr_image_input = gr.inputs.Image()
gr_slider_confidence = gr.inputs.Slider(0,100,5,85,
                                        label='Set confidence threshold for masks')
# gradio outputs
gr_image_output = gr.outputs.Image() 

####################################################
# Create user interface and launch
gr.Interface(predict_animal_mask, 
                inputs = [gr_image_input,gr_slider_confidence],
                outputs = gr_image_output,
                title = 'Image segmentation with varying confidence',
                description = "An image segmentation webapp using DETR (End-to-End Object Detection) model with ResNet-50 backbone").launch()


####################################
# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
# image = Image.open(requests.get(url, stream=True).raw)

# inputs = feature_extractor(images=image, return_tensors="pt")
# outputs = model(**inputs)
# logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)