Spaces:
Runtime error
Runtime error
sfmig
commited on
Commit
•
6c333c9
1
Parent(s):
912be9c
added a different color palette
Browse files- .gitignore +2 -0
- app.py +19 -162
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
scrap*
|
2 |
.DS_Store
|
3 |
requirements_conda.txt
|
|
|
|
|
|
1 |
scrap*
|
2 |
.DS_Store
|
3 |
requirements_conda.txt
|
4 |
+
app_0.py
|
5 |
+
test.py
|
app.py
CHANGED
@@ -12,6 +12,13 @@ https://arxiv.org/abs/2005.12872
|
|
12 |
Additions
|
13 |
- add shown labels as strings
|
14 |
- show only animal masks (ask an nlp model?)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
"""
|
16 |
|
17 |
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
@@ -21,163 +28,8 @@ import numpy as np
|
|
21 |
import torch
|
22 |
import torchvision
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
def ade_palette():
|
27 |
-
"""ADE20K palette that maps each class to RGB values."""
|
28 |
-
return [
|
29 |
-
[120, 120, 120],
|
30 |
-
[180, 120, 120],
|
31 |
-
[6, 230, 230],
|
32 |
-
[80, 50, 50],
|
33 |
-
[4, 200, 3],
|
34 |
-
[120, 120, 80],
|
35 |
-
[140, 140, 140],
|
36 |
-
[204, 5, 255],
|
37 |
-
[230, 230, 230],
|
38 |
-
[4, 250, 7],
|
39 |
-
[224, 5, 255],
|
40 |
-
[235, 255, 7],
|
41 |
-
[150, 5, 61],
|
42 |
-
[120, 120, 70],
|
43 |
-
[8, 255, 51],
|
44 |
-
[255, 6, 82],
|
45 |
-
[143, 255, 140],
|
46 |
-
[204, 255, 4],
|
47 |
-
[255, 51, 7],
|
48 |
-
[204, 70, 3],
|
49 |
-
[0, 102, 200],
|
50 |
-
[61, 230, 250],
|
51 |
-
[255, 6, 51],
|
52 |
-
[11, 102, 255],
|
53 |
-
[255, 7, 71],
|
54 |
-
[255, 9, 224],
|
55 |
-
[9, 7, 230],
|
56 |
-
[220, 220, 220],
|
57 |
-
[255, 9, 92],
|
58 |
-
[112, 9, 255],
|
59 |
-
[8, 255, 214],
|
60 |
-
[7, 255, 224],
|
61 |
-
[255, 184, 6],
|
62 |
-
[10, 255, 71],
|
63 |
-
[255, 41, 10],
|
64 |
-
[7, 255, 255],
|
65 |
-
[224, 255, 8],
|
66 |
-
[102, 8, 255],
|
67 |
-
[255, 61, 6],
|
68 |
-
[255, 194, 7],
|
69 |
-
[255, 122, 8],
|
70 |
-
[0, 255, 20],
|
71 |
-
[255, 8, 41],
|
72 |
-
[255, 5, 153],
|
73 |
-
[6, 51, 255],
|
74 |
-
[235, 12, 255],
|
75 |
-
[160, 150, 20],
|
76 |
-
[0, 163, 255],
|
77 |
-
[140, 140, 140],
|
78 |
-
[250, 10, 15],
|
79 |
-
[20, 255, 0],
|
80 |
-
[31, 255, 0],
|
81 |
-
[255, 31, 0],
|
82 |
-
[255, 224, 0],
|
83 |
-
[153, 255, 0],
|
84 |
-
[0, 0, 255],
|
85 |
-
[255, 71, 0],
|
86 |
-
[0, 235, 255],
|
87 |
-
[0, 173, 255],
|
88 |
-
[31, 0, 255],
|
89 |
-
[11, 200, 200],
|
90 |
-
[255, 82, 0],
|
91 |
-
[0, 255, 245],
|
92 |
-
[0, 61, 255],
|
93 |
-
[0, 255, 112],
|
94 |
-
[0, 255, 133],
|
95 |
-
[255, 0, 0],
|
96 |
-
[255, 163, 0],
|
97 |
-
[255, 102, 0],
|
98 |
-
[194, 255, 0],
|
99 |
-
[0, 143, 255],
|
100 |
-
[51, 255, 0],
|
101 |
-
[0, 82, 255],
|
102 |
-
[0, 255, 41],
|
103 |
-
[0, 255, 173],
|
104 |
-
[10, 0, 255],
|
105 |
-
[173, 255, 0],
|
106 |
-
[0, 255, 153],
|
107 |
-
[255, 92, 0],
|
108 |
-
[255, 0, 255],
|
109 |
-
[255, 0, 245],
|
110 |
-
[255, 0, 102],
|
111 |
-
[255, 173, 0],
|
112 |
-
[255, 0, 20],
|
113 |
-
[255, 184, 184],
|
114 |
-
[0, 31, 255],
|
115 |
-
[0, 255, 61],
|
116 |
-
[0, 71, 255],
|
117 |
-
[255, 0, 204],
|
118 |
-
[0, 255, 194],
|
119 |
-
[0, 255, 82],
|
120 |
-
[0, 10, 255],
|
121 |
-
[0, 112, 255],
|
122 |
-
[51, 0, 255],
|
123 |
-
[0, 194, 255],
|
124 |
-
[0, 122, 255],
|
125 |
-
[0, 255, 163],
|
126 |
-
[255, 153, 0],
|
127 |
-
[0, 255, 10],
|
128 |
-
[255, 112, 0],
|
129 |
-
[143, 255, 0],
|
130 |
-
[82, 0, 255],
|
131 |
-
[163, 255, 0],
|
132 |
-
[255, 235, 0],
|
133 |
-
[8, 184, 170],
|
134 |
-
[133, 0, 255],
|
135 |
-
[0, 255, 92],
|
136 |
-
[184, 0, 255],
|
137 |
-
[255, 0, 31],
|
138 |
-
[0, 184, 255],
|
139 |
-
[0, 214, 255],
|
140 |
-
[255, 0, 112],
|
141 |
-
[92, 255, 0],
|
142 |
-
[0, 224, 255],
|
143 |
-
[112, 224, 255],
|
144 |
-
[70, 184, 160],
|
145 |
-
[163, 0, 255],
|
146 |
-
[153, 0, 255],
|
147 |
-
[71, 255, 0],
|
148 |
-
[255, 0, 163],
|
149 |
-
[255, 204, 0],
|
150 |
-
[255, 0, 143],
|
151 |
-
[0, 255, 235],
|
152 |
-
[133, 255, 0],
|
153 |
-
[255, 0, 235],
|
154 |
-
[245, 0, 255],
|
155 |
-
[255, 0, 122],
|
156 |
-
[255, 245, 0],
|
157 |
-
[10, 190, 212],
|
158 |
-
[214, 255, 0],
|
159 |
-
[0, 204, 255],
|
160 |
-
[20, 0, 255],
|
161 |
-
[255, 255, 0],
|
162 |
-
[0, 153, 255],
|
163 |
-
[0, 41, 255],
|
164 |
-
[0, 255, 204],
|
165 |
-
[41, 0, 255],
|
166 |
-
[41, 255, 0],
|
167 |
-
[173, 0, 255],
|
168 |
-
[0, 245, 255],
|
169 |
-
[71, 0, 255],
|
170 |
-
[122, 0, 255],
|
171 |
-
[0, 255, 184],
|
172 |
-
[0, 92, 255],
|
173 |
-
[184, 255, 0],
|
174 |
-
[0, 133, 255],
|
175 |
-
[255, 214, 0],
|
176 |
-
[25, 194, 194],
|
177 |
-
[102, 255, 0],
|
178 |
-
[92, 0, 255],
|
179 |
-
]
|
180 |
-
|
181 |
|
182 |
def predict_animal_mask(im,
|
183 |
gr_slider_confidence):
|
@@ -187,9 +39,9 @@ def predict_animal_mask(im,
|
|
187 |
# encoding is a dict with pixel_values and pixel_mask
|
188 |
encoding = feature_extractor(images=image, return_tensors="pt") #pt=Pytorch, tf=TensorFlow
|
189 |
outputs = model(**encoding) # odict with keys: ['logits', 'pred_boxes', 'pred_masks', 'last_hidden_state', 'encoder_last_hidden_state']
|
190 |
-
logits = outputs.logits # torch.Size([1, 100, 251]); why 251?
|
191 |
bboxes = outputs.pred_boxes
|
192 |
-
masks = outputs.pred_masks # torch.Size([1, 100, 200, 200]); for every pixel, score in each of the 100 classes? there is a mask per class
|
193 |
|
194 |
# keep only the masks with high confidence?--------------------------------
|
195 |
# compute the prob per mask (i.e., class), excluding the "no-object" class (the last one)
|
@@ -200,8 +52,13 @@ def predict_animal_mask(im,
|
|
200 |
# postprocess the mask (numpy arrays)
|
201 |
label_per_pixel = torch.argmax(masks[keep].squeeze(),dim=0).detach().numpy() # from the masks per class, select the highest per pixel
|
202 |
color_mask = np.zeros(image.size+(3,))
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
# Show image + mask
|
207 |
pred_img = np.array(image.convert('RGB'))*0.5 + color_mask*0.5
|
@@ -227,7 +84,7 @@ gr.Interface(predict_animal_mask,
|
|
227 |
inputs = [gr_image_input,gr_slider_confidence],
|
228 |
outputs = gr_image_output,
|
229 |
title = 'Image segmentation with varying confidence',
|
230 |
-
description = "
|
231 |
|
232 |
|
233 |
####################################
|
|
|
12 |
Additions
|
13 |
- add shown labels as strings
|
14 |
- show only animal masks (ask an nlp model?)
|
15 |
+
|
16 |
+
For next time
|
17 |
+
- for diff 'confidence' the high conf masks should change....
|
18 |
+
- colors are not great and should be constant per class? add text?
|
19 |
+
- Im getting core dumped (segmentation fault) when loading hugging face model.. :()
|
20 |
+
https://github.com/huggingface/transformers/issues/16939
|
21 |
+
- cap slider to 95?
|
22 |
"""
|
23 |
|
24 |
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
|
|
28 |
import torch
|
29 |
import torchvision
|
30 |
|
31 |
+
import itertools
|
32 |
+
import seaborn as sns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def predict_animal_mask(im,
|
35 |
gr_slider_confidence):
|
|
|
39 |
# encoding is a dict with pixel_values and pixel_mask
|
40 |
encoding = feature_extractor(images=image, return_tensors="pt") #pt=Pytorch, tf=TensorFlow
|
41 |
outputs = model(**encoding) # odict with keys: ['logits', 'pred_boxes', 'pred_masks', 'last_hidden_state', 'encoder_last_hidden_state']
|
42 |
+
logits = outputs.logits # torch.Size([1, 100, 251]); class logits? but why 251?
|
43 |
bboxes = outputs.pred_boxes
|
44 |
+
masks = outputs.pred_masks # torch.Size([1, 100, 200, 200]); mask logits? for every pixel, score in each of the 100 classes? there is a mask per class
|
45 |
|
46 |
# keep only the masks with high confidence?--------------------------------
|
47 |
# compute the prob per mask (i.e., class), excluding the "no-object" class (the last one)
|
|
|
52 |
# postprocess the mask (numpy arrays)
|
53 |
label_per_pixel = torch.argmax(masks[keep].squeeze(),dim=0).detach().numpy() # from the masks per class, select the highest per pixel
|
54 |
color_mask = np.zeros(image.size+(3,))
|
55 |
+
palette = itertools.cycle(sns.color_palette())
|
56 |
+
for lbl in np.unique(label_per_pixel): #enumerate(palette()):
|
57 |
+
color_mask[label_per_pixel==lbl,:] = np.asarray(next(palette))*255 #color
|
58 |
+
|
59 |
+
# color_mask = np.zeros(image.size+(3,))
|
60 |
+
# for lbl, color in enumerate(ade_palette()):
|
61 |
+
# color_mask[label_per_pixel==lbl,:] = color
|
62 |
|
63 |
# Show image + mask
|
64 |
pred_img = np.array(image.convert('RGB'))*0.5 + color_mask*0.5
|
|
|
84 |
inputs = [gr_image_input,gr_slider_confidence],
|
85 |
outputs = gr_image_output,
|
86 |
title = 'Image segmentation with varying confidence',
|
87 |
+
description = "A panoptic (semantic+instance) segmentation webapp using DETR (End-to-End Object Detection) model with ResNet-50 backbone").launch()
|
88 |
|
89 |
|
90 |
####################################
|