File size: 5,225 Bytes
334dcac
 
 
e4bcc80
55f430c
334dcac
 
 
 
55f430c
 
 
 
 
334dcac
 
 
 
 
 
55f430c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2afa949
55f430c
 
 
334dcac
99ea77b
 
2afa949
99ea77b
2afa949
55f430c
2afa949
55f430c
99ea77b
55f430c
99ea77b
2afa949
 
 
e4bcc80
2afa949
334dcac
99ea77b
334dcac
99ea77b
2afa949
99ea77b
 
 
2afa949
 
 
 
 
55f430c
2afa949
55f430c
99ea77b
 
 
 
 
 
 
 
 
 
 
 
55f430c
 
 
334dcac
55f430c
334dcac
 
 
 
 
 
 
 
 
 
 
 
2afa949
55f430c
 
 
334dcac
 
99ea77b
334dcac
 
 
 
55f430c
 
 
 
 
 
 
 
99ea77b
55f430c
 
 
 
 
 
 
 
 
 
 
 
99ea77b
55f430c
 
 
 
2afa949
55f430c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# File name: graph_client.py
from concurrent.futures import ThreadPoolExecutor
import json
import os
import numpy as np
import requests
from concurrent.futures import ThreadPoolExecutor, as_completed
import time

import torch

# hack for debugging, set HTTP_ADDRESS to "http://127.0.0.1:8000/"
# os.environ["HTTP_ADDRESS"] = "http://192.168.7.79:8000"

test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
english_text = (
    "It was the best of times, it was the worst of times, it was the age "
    "of wisdom, it was the age of foolishness, it was the epoch of belief"
)

clip_model="ViT-L/14"
clip_model_id ="laion5B-L-14"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print ("using device", device)
from clip_retrieval.load_clip import load_clip, get_tokenizer 
# from clip_retrieval.clip_client import ClipClient, Modality
model, preprocess = load_clip(clip_model, use_jit=True, device=device)
tokenizer = get_tokenizer(clip_model)

def preprocess_image(image_url):
    # download image from url
    import requests
    from PIL import Image
    from io import BytesIO
    response = requests.get(test_image_url)
    input_image = Image.open(BytesIO(response.content))
    input_image = input_image.convert('RGB')
    # convert image to numpy array
    input_image = np.array(input_image)
    input_im = Image.fromarray(input_image)
    prepro = preprocess(input_im).unsqueeze(0).cpu()
    return prepro

preprocessed_image = preprocess_image(test_image_url)


def text_to_embedding(text):
    payload = {
        "text": ('str', text, 'application/octet-stream'),
    }
    url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
    response = requests.post(url, files=payload)
    embeddings = response.text
    return embeddings

def image_url_to_embedding(image_url):
    payload = {
        "image_url": ('str', test_image_url, 'application/octet-stream'),
    }
    url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
    response = requests.post(url, files=payload)
    embeddings = response.text
    return embeddings

def preprocessed_image_to_embedding(image):
    key = "preprocessed_image"
    data_bytes = image.numpy().tobytes()
    shape_bytes = np.array(image.shape).tobytes()
    dtype_bytes = str(image.dtype).encode()
    payload = {
        key: ('tensor', data_bytes, 'application/octet-stream'),
        'shape': ('shape', shape_bytes, 'application/octet-stream'),
        'dtype': ('dtype', dtype_bytes, 'application/octet-stream'),
    }
    url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
    response = requests.post(url, files=payload)
    embeddings = response.text
    return embeddings

def _send_text_request(number):
    embeddings = text_to_embedding(english_text)
    return number, embeddings

def _send_image_url_request(number):
    embeddings = image_url_to_embedding(test_image_url)
    return number, embeddings

def _send_preprocessed_image_request(number):
    embeddings = preprocessed_image_to_embedding(preprocessed_image)
    return number, embeddings

def process(numbers, send_func, max_workers=10):
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = [executor.submit(send_func, number) for number in numbers]
        for future in as_completed(futures):
            n_result, result = future.result()
            result = json.loads(result)
            print (f"{n_result} : {len(result[0])}")

# def process_text(numbers, max_workers=10):
#     for n in numbers:
#         n_result, result = send_text_request(n)
#         result = json.loads(result)
#         print (f"{n_result} : {len(result[0])}")

if __name__ == "__main__":
    n_calls = 300

    # test text
    # n_calls = 1
    numbers = list(range(n_calls))
    start_time = time.monotonic()
    process(numbers, _send_text_request)
    end_time = time.monotonic()
    total_time = end_time - start_time
    avg_time_ms = total_time / n_calls * 1000
    calls_per_sec = n_calls / total_time
    print(f"Text...")
    print(f" Average time taken: {avg_time_ms:.2f} ms")
    print(f" Number of calls per second: {calls_per_sec:.2f}")    

    # test image url
    # n_calls = 1
    numbers = list(range(n_calls))
    start_time = time.monotonic()
    process(numbers, _send_image_url_request)
    end_time = time.monotonic()
    total_time = end_time - start_time
    avg_time_ms = total_time / n_calls * 1000
    calls_per_sec = n_calls / total_time
    print(f"Image passing url...")
    print(f" Average time taken: {avg_time_ms:.2f} ms")
    print(f" Number of calls per second: {calls_per_sec:.2f}")    

    # test image as vector
    # n_calls = 1
    numbers = list(range(n_calls))
    start_time = time.monotonic()
    process(numbers, _send_preprocessed_image_request)
    end_time = time.monotonic()
    total_time = end_time - start_time
    avg_time_ms = total_time / n_calls * 1000
    calls_per_sec = n_calls / total_time
    print(f"Preprocessed image...")
    print(f" Average time taken: {avg_time_ms:.2f} ms")
    print(f" Number of calls per second: {calls_per_sec:.2f}")