File size: 8,176 Bytes
0441b41
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b5d5f
 
0441b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from concurrent.futures import ThreadPoolExecutor, as_completed
import json
import os
import time

import numpy as np
import requests
import torch

from clip_app_client import ClipAppClient
from clip_retrieval.clip_client import ClipClient, Modality
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
map_clip_to_clip_retreval = {
    "ViT-L/14": "laion5B-L-14",
    "open_clip:ViT-H-14": "laion5B-H-14",
    "open_clip:ViT-L-14": "laion5B-L-14",
}


def safe_url(url):
    import urllib.parse
    url = urllib.parse.quote(url, safe=':/')
    # if url has two .jpg filenames, take the first one
    if url.count('.jpg') > 0:
        url = url.split('.jpg')[0] + '.jpg'
    return url

# test_image_path = os.path.join(os.getcwd(), "images", "plant-001.png")
test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "plant-001.jpeg")
# test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "plant-002.jpeg")
# test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "plant-002.jpeg")
# test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "car-002.jpeg")

app_client = ClipAppClient()
clip_retrieval_client = ClipClient(
    url=clip_retrieval_service_url, 
    indice_name=map_clip_to_clip_retreval[app_client.clip_model],
    # use_safety_model = False,
    # use_violence_detector = False,
    # use_mclip = False,
    num_images = 300,
    # modality = Modality.TEXT,
    # modality = Modality.TEXT,
    )
preprocessed_image = app_client.preprocess_image(test_image_path)
preprocessed_image_embeddings = app_client.preprocessed_image_to_embedding(preprocessed_image)
print (f"embeddings: {preprocessed_image_embeddings.shape}")

embedding_as_list = preprocessed_image_embeddings[0].tolist()
results = clip_retrieval_client.query(embedding_input=embedding_as_list)

# hints = ""
# for result in results:
#     url = safe_url(result["url"])
#     similarty = float("{:.4f}".format(result["similarity"]))
#     title = result["caption"]
#     print (f"{similarty} \"{title}\" {url}")
#     if len(hints) > 0:
#         hints += f", \"{title}\""
#     else:
#         hints += f"\"{title}\""
# print("---")
# print(hints)

image_labels = [r['caption'] for r in results]
image_label_vectors = [app_client.text_to_embedding(label) for label in image_labels]
image_label_vectors = torch.cat(image_label_vectors, dim=0)
dot_product = torch.mm(image_label_vectors, preprocessed_image_embeddings.T)
similarity_image_label = [(float("{:.4f}".format(dot_product[i][0])), image_labels[i]) for i in range(len(image_labels))]
similarity_image_label.sort(reverse=True)
for similarity, image_label in similarity_image_label:
    print (f"{similarity} {image_label}")

print (f"----\n")

# now do the same for images
def _safe_image_url_to_embedding(url, safe_return):
    try:
        return app_client.image_url_to_embedding(url)
    except:
        return safe_return
image_urls = [safe_url(r['url']) for r in results]
image_vectors = [_safe_image_url_to_embedding(url, preprocessed_image_embeddings * 0) for url in image_urls]
image_vectors = torch.cat(image_vectors, dim=0)
dot_product = torch.mm(image_vectors, preprocessed_image_embeddings.T)
similarity_image = [(float("{:.4f}".format(dot_product[i][0])), image_labels[i]) for i in range(len(image_labels))]
similarity_image.sort(reverse=True)
for similarity, image_label in similarity_image:
    print (f"{similarity} {image_label}")

def mean_template(embeddings):
    template = torch.mean(embeddings, dim=0, keepdim=True)
    return template

def principal_component_analysis_template(embeddings):
    mean = torch.mean(embeddings, dim=0)
    embeddings_centered = embeddings - mean  # Subtract the mean
    u, s, v = torch.svd(embeddings_centered)  # Perform SVD
    template = u[:, 0]  # The first column of u gives the first principal component
    return template

def clustering_templates(embeddings, n_clusters=5):
    from sklearn.cluster import KMeans
    import numpy as np

    kmeans = KMeans(n_clusters=n_clusters) 
    embeddings_np = embeddings.numpy()  # Convert to numpy
    clusters = kmeans.fit_predict(embeddings_np)

    templates = []
    for cluster in np.unique(clusters):
        cluster_mean = np.mean(embeddings_np[clusters == cluster], axis=0)
        templates.append(torch.from_numpy(cluster_mean))  # Convert back to tensor
    return templates

# create a templates using clustering
print(f"create a templates using clustering")
merged_embeddings = torch.cat([image_label_vectors, image_vectors], dim=0)
clusters = clustering_templates(merged_embeddings, n_clusters=5)
# convert from list to 2d matrix
clusters = torch.stack(clusters, dim=0)
dot_product = torch.mm(clusters, preprocessed_image_embeddings.T)
cluster_similarity = [(float("{:.4f}".format(dot_product[i][0])), i) for i in range(len(clusters))]
cluster_similarity.sort(reverse=True)
for similarity, idx in cluster_similarity:
    print (f"{similarity} {idx}")
# template = highest scoring cluster
# template = clusters[cluster_similarity[0][1]]
template = preprocessed_image_embeddings * (len(clusters)-1)
for i in range(1, len(clusters)):
    template -= clusters[cluster_similarity[i][1]]
print("---")
print(f"seaching based on template")
results = clip_retrieval_client.query(embedding_input=template[0].tolist())
hints = ""
for result in results:
    url = safe_url(result["url"])
    similarty = float("{:.4f}".format(result["similarity"]))
    title = result["caption"]
    print (f"{similarty} \"{title}\" {url}")
    if len(hints) > 0:
        hints += f", \"{title}\""
    else:
        hints += f"\"{title}\""
print(hints)


# cluster_num = 1
# for template in clusters:
#     print("---")
#     print(f"cluster {cluster_num} of {len(clusters)}")
#     results = clip_retrieval_client.query(embedding_input=template.tolist())
#     hints = ""
#     for result in results:
#         url = safe_url(result["url"])
#         similarty = float("{:.4f}".format(result["similarity"]))
#         title = result["caption"]
#         print (f"{similarty} \"{title}\" {url}")
#         if len(hints) > 0:
#             hints += f", \"{title}\""
#         else:
#             hints += f"\"{title}\""
#     print(hints)
#     cluster_num += 1


# create a template
# mean
# image_label_template = mean_template(image_label_vectors)
# image_template = mean_template(image_vectors)
# pca
# image_label_template = principal_component_analysis_template(image_label_vectors)
# image_template = principal_component_analysis_template(image_vectors)
# clustering
# image_label_template = clustering_template(image_label_vectors)
# image_template = clustering_template(image_vectors)

# take the embedding and subtract the template
# image_label_template = preprocessed_image_embeddings - image_label_template
# image_template = preprocessed_image_embeddings - image_template
# image_label_template =  image_label_template - preprocessed_image_embeddings
# image_template =  image_template - preprocessed_image_embeddings
# normalize
# image_label_template = image_label_template / image_label_template.norm()
# image_template = image_template / image_template.norm()

# results = clip_retrieval_client.query(embedding_input=image_label_template[0].tolist())
# hints = ""
# print("---")
# print("average of image labels")
# for result in results:
#     url = safe_url(result["url"])
#     similarty = float("{:.4f}".format(result["similarity"]))
#     title = result["caption"]
#     print (f"{similarty} \"{title}\" {url}")
#     if len(hints) > 0:
#         hints += f", \"{title}\""
#     else:
#         hints += f"\"{title}\""
# print(hints)

# print("---")
# print("average of images")
# results = clip_retrieval_client.query(embedding_input=image_template[0].tolist())
# hints = ""
# for result in results:
#     url = safe_url(result["url"])
#     similarty = float("{:.4f}".format(result["similarity"]))
#     title = result["caption"]
#     print (f"{similarty} \"{title}\" {url}")
#     if len(hints) > 0:
#         hints += f", \"{title}\""
#     else:
#         hints += f"\"{title}\""
# print(hints)