sohojoe's picture
use binary for all
2afa949
raw
history blame
4.91 kB
# File name: graph_client.py
from concurrent.futures import ThreadPoolExecutor
import json
import os
import numpy as np
import requests
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import torch
# hack for debugging, set HTTP_ADDRESS to "http://127.0.0.1:8000/"
# os.environ["HTTP_ADDRESS"] = "http://192.168.7.79:8000"
test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
english_text = (
"It was the best of times, it was the worst of times, it was the age "
"of wisdom, it was the age of foolishness, it was the epoch of belief"
)
clip_model="ViT-L/14"
clip_model_id ="laion5B-L-14"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print ("using device", device)
from clip_retrieval.load_clip import load_clip, get_tokenizer
# from clip_retrieval.clip_client import ClipClient, Modality
model, preprocess = load_clip(clip_model, use_jit=True, device=device)
tokenizer = get_tokenizer(clip_model)
def preprocess_image(image_url):
# download image from url
import requests
from PIL import Image
from io import BytesIO
response = requests.get(test_image_url)
input_image = Image.open(BytesIO(response.content))
input_image = input_image.convert('RGB')
# convert image to numpy array
input_image = np.array(input_image)
input_im = Image.fromarray(input_image)
prepro = preprocess(input_im).unsqueeze(0).cpu()
return prepro
preprocessed_image = preprocess_image(test_image_url)
def send_text_request(number):
payload = {
"text": ('str', english_text, 'application/octet-stream'),
}
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
response = requests.post(url, files=payload)
embeddings = response.text
return number, embeddings
def send_image_url_request(number):
payload = {
"image_url": ('str', test_image_url, 'application/octet-stream'),
}
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
response = requests.post(url, files=payload)
embeddings = response.text
return number, embeddings
def send_preprocessed_image_request(number):
key = "preprocessed_image"
data_bytes = preprocessed_image.numpy().tobytes()
shape_bytes = np.array(preprocessed_image.shape).tobytes()
dtype_bytes = str(preprocessed_image.dtype).encode()
payload = {
key: ('tensor', data_bytes, 'application/octet-stream'),
'shape': ('shape', shape_bytes, 'application/octet-stream'),
'dtype': ('dtype', dtype_bytes, 'application/octet-stream'),
}
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
response = requests.post(url, files=payload)
embeddings = response.text
return number, embeddings
def process(numbers, send_func, max_workers=10):
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(send_func, number) for number in numbers]
for future in as_completed(futures):
n_result, result = future.result()
result = json.loads(result)
print (f"{n_result} : {len(result[0])}")
# def process_text(numbers, max_workers=10):
# for n in numbers:
# n_result, result = send_text_request(n)
# result = json.loads(result)
# print (f"{n_result} : {len(result[0])}")
if __name__ == "__main__":
n_calls = 300
# test text
# n_calls = 1
numbers = list(range(n_calls))
start_time = time.monotonic()
process(numbers, send_text_request)
end_time = time.monotonic()
total_time = end_time - start_time
avg_time_ms = total_time / n_calls * 1000
calls_per_sec = n_calls / total_time
print(f"Text...")
print(f" Average time taken: {avg_time_ms:.2f} ms")
print(f" Number of calls per second: {calls_per_sec:.2f}")
# test image url
# n_calls = 1
numbers = list(range(n_calls))
start_time = time.monotonic()
process(numbers, send_image_url_request)
end_time = time.monotonic()
total_time = end_time - start_time
avg_time_ms = total_time / n_calls * 1000
calls_per_sec = n_calls / total_time
print(f"Image passing url...")
print(f" Average time taken: {avg_time_ms:.2f} ms")
print(f" Number of calls per second: {calls_per_sec:.2f}")
# test image as vector
# n_calls = 1
numbers = list(range(n_calls))
start_time = time.monotonic()
process(numbers, send_preprocessed_image_request)
end_time = time.monotonic()
total_time = end_time - start_time
avg_time_ms = total_time / n_calls * 1000
calls_per_sec = n_calls / total_time
print(f"Preprocessed image...")
print(f" Average time taken: {avg_time_ms:.2f} ms")
print(f" Number of calls per second: {calls_per_sec:.2f}")