|
|
|
import json |
|
import os |
|
import numpy as np |
|
import torch |
|
from starlette.requests import Request |
|
from PIL import Image |
|
import ray |
|
from ray import serve |
|
from clip_retrieval.load_clip import load_clip, get_tokenizer |
|
|
|
|
|
@serve.deployment(num_replicas=6, ray_actor_options={"num_cpus": .2, "num_gpus": 0.1}) |
|
|
|
class CLIPTransform: |
|
def __init__(self): |
|
|
|
|
|
|
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
self._clip_model="ViT-L/14" |
|
|
|
self.model, self.preprocess = load_clip(self._clip_model, use_jit=True, device=self.device) |
|
self.tokenizer = get_tokenizer(self._clip_model) |
|
|
|
print ("using device", self.device) |
|
|
|
def text_to_embeddings(self, prompt): |
|
text = self.tokenizer([prompt]).to(self.device) |
|
with torch.no_grad(): |
|
prompt_embededdings = self.model.encode_text(text) |
|
prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True) |
|
return(prompt_embededdings) |
|
|
|
def image_to_embeddings(self, input_im): |
|
input_im = Image.fromarray(input_im) |
|
prepro = self.preprocess(input_im).unsqueeze(0).to(self.device) |
|
with torch.no_grad(): |
|
image_embeddings = self.model.encode_image(prepro) |
|
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) |
|
return(image_embeddings) |
|
|
|
def preprocessed_image_to_emdeddings(self, prepro): |
|
with torch.no_grad(): |
|
image_embeddings = self.model.encode_image(prepro) |
|
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) |
|
return(image_embeddings) |
|
|
|
async def __call__(self, http_request: Request) -> str: |
|
form_data = await http_request.form() |
|
|
|
embeddings = None |
|
if "text" in form_data: |
|
prompt = (await form_data["text"].read()).decode() |
|
print (type(prompt)) |
|
print (str(prompt)) |
|
embeddings = self.text_to_embeddings(prompt) |
|
elif "image_url" in form_data: |
|
image_url = (await form_data["image_url"].read()).decode() |
|
|
|
import requests |
|
from io import BytesIO |
|
image_bytes = requests.get(image_url).content |
|
input_image = Image.open(BytesIO(image_bytes)) |
|
input_image = input_image.convert('RGB') |
|
input_image = np.array(input_image) |
|
embeddings = self.image_to_embeddings(input_image) |
|
elif "preprocessed_image" in form_data: |
|
tensor_bytes = await form_data["preprocessed_image"].read() |
|
shape_bytes = await form_data["shape"].read() |
|
dtype_bytes = await form_data["dtype"].read() |
|
|
|
|
|
dtype_mapping = { |
|
"torch.float32": torch.float32, |
|
"torch.float64": torch.float64, |
|
"torch.float16": torch.float16, |
|
"torch.uint8": torch.uint8, |
|
"torch.int8": torch.int8, |
|
"torch.int16": torch.int16, |
|
"torch.int32": torch.int32, |
|
"torch.int64": torch.int64, |
|
torch.float32: np.float32, |
|
torch.float64: np.float64, |
|
torch.float16: np.float16, |
|
torch.uint8: np.uint8, |
|
torch.int8: np.int8, |
|
torch.int16: np.int16, |
|
torch.int32: np.int32, |
|
torch.int64: np.int64, |
|
|
|
} |
|
dtype_str = dtype_bytes.decode() |
|
dtype_torch = dtype_mapping[dtype_str] |
|
dtype_numpy = dtype_mapping[dtype_torch] |
|
|
|
|
|
shape = tuple([1, 3, 224, 224]) |
|
|
|
tensor_numpy = np.frombuffer(tensor_bytes, dtype=dtype_numpy).reshape(shape) |
|
tensor_numpy = np.require(tensor_numpy, requirements='W') |
|
tensor = torch.from_numpy(tensor_numpy) |
|
prepro = tensor.to(self.device) |
|
embeddings = self.preprocessed_image_to_emdeddings(prepro) |
|
else: |
|
print ("Invalid request") |
|
raise Exception("Invalid request") |
|
return embeddings.float().cpu().numpy().tolist() |
|
|
|
request = await http_request.json() |
|
|
|
|
|
|
|
embeddings = None |
|
if "text" in request: |
|
prompt = request["text"] |
|
embeddings = self.text_to_embeddings(prompt) |
|
elif "image_url" in request: |
|
image_url = request["image_url"] |
|
|
|
import requests |
|
from io import BytesIO |
|
image_bytes = requests.get(image_url).content |
|
input_image = Image.open(BytesIO(image_bytes)) |
|
input_image = input_image.convert('RGB') |
|
input_image = np.array(input_image) |
|
embeddings = self.image_to_embeddings(input_image) |
|
elif "preprocessed_image" in request: |
|
prepro = request["preprocessed_image"] |
|
|
|
prepro = torch.tensor(prepro).to(self.device) |
|
embeddings = self.preprocessed_image_to_emdeddings(prepro) |
|
else: |
|
raise Exception("Invalid request") |
|
return embeddings.cpu().numpy().tolist() |
|
|
|
deployment_graph = CLIPTransform.bind() |
|
|