Joe Booth
commited on
Commit
·
0e61e04
1
Parent(s):
8498cb9
improve image load success rate
Browse files
app.py
CHANGED
@@ -70,6 +70,14 @@ def base64_to_embedding(embeddings_b64):
|
|
70 |
# embeddings = torch.tensor(embeddings)
|
71 |
return embeddings
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def main(
|
74 |
# input_im,
|
75 |
embeddings,
|
@@ -84,17 +92,26 @@ def main(
|
|
84 |
for result in results:
|
85 |
if len(images) >= n_samples:
|
86 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
# dowload image
|
88 |
import requests
|
89 |
from io import BytesIO
|
90 |
try:
|
91 |
-
response = requests.get(
|
92 |
if not response.ok:
|
93 |
continue
|
94 |
bytes = BytesIO(response.content)
|
95 |
image = Image.open(bytes)
|
96 |
-
image.
|
97 |
-
|
|
|
98 |
except Exception as e:
|
99 |
print(e)
|
100 |
return images
|
@@ -367,7 +384,7 @@ Try uploading a few images and/or add some text prompts and click generate image
|
|
367 |
with gr.Column(scale=3, min_width=200):
|
368 |
submit = gr.Button("Search embedding space")
|
369 |
with gr.Row():
|
370 |
-
output = gr.Gallery(label="
|
371 |
|
372 |
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
|
373 |
embedding_power_state = gr.State(value=[1. for i in range(max_tabs)])
|
@@ -383,7 +400,7 @@ Try uploading a few images and/or add some text prompts and click generate image
|
|
383 |
|
384 |
# submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
|
385 |
submit.click(main, inputs= [average_embedding_base64, n_samples], outputs=output)
|
386 |
-
output.style(grid=
|
387 |
|
388 |
with gr.Row():
|
389 |
gr.Markdown(
|
@@ -394,7 +411,7 @@ My interest is to use CLIP for image/video understanding (see [CLIP_visual-spati
|
|
394 |
### Initial Features
|
395 |
|
396 |
- Combine up to 10 Images and/or text inputs to create an average embedding space.
|
397 |
-
- Search the laion 5b
|
398 |
|
399 |
### Known limitations
|
400 |
|
@@ -402,7 +419,7 @@ My interest is to use CLIP for image/video understanding (see [CLIP_visual-spati
|
|
402 |
|
403 |
### Acknowledgements
|
404 |
|
405 |
-
- I heavily build on [clip-retrieval](https://rom1504.github.io/clip-retrieval/) and use their API. Please [
|
406 |
- [CLIP](https://openai.com/blog/clip/)
|
407 |
- [Stable Diffusion](https://github.com/CompVis/stable-diffusion)
|
408 |
|
|
|
70 |
# embeddings = torch.tensor(embeddings)
|
71 |
return embeddings
|
72 |
|
73 |
+
def safe_url(url):
|
74 |
+
import urllib.parse
|
75 |
+
url = urllib.parse.quote(url, safe=':/')
|
76 |
+
# if url has two .jpg filenames, take the first one
|
77 |
+
if url.count('.jpg') > 0:
|
78 |
+
url = url.split('.jpg')[0] + '.jpg'
|
79 |
+
return url
|
80 |
+
|
81 |
def main(
|
82 |
# input_im,
|
83 |
embeddings,
|
|
|
92 |
for result in results:
|
93 |
if len(images) >= n_samples:
|
94 |
break
|
95 |
+
url = safe_url(result["url"])
|
96 |
+
similarty = float("{:.4f}".format(result["similarity"]))
|
97 |
+
title = str(similarty) + ' ' + result["caption"]
|
98 |
+
|
99 |
+
# we could just return the url and the control would take care of the rest
|
100 |
+
# however, if the url returns an error, the page crashes.
|
101 |
+
# images.append((url, title))
|
102 |
+
# continue
|
103 |
# dowload image
|
104 |
import requests
|
105 |
from io import BytesIO
|
106 |
try:
|
107 |
+
response = requests.get(url)
|
108 |
if not response.ok:
|
109 |
continue
|
110 |
bytes = BytesIO(response.content)
|
111 |
image = Image.open(bytes)
|
112 |
+
if image.mode != 'RGB':
|
113 |
+
image = image.convert('RGB')
|
114 |
+
images.append((image, title))
|
115 |
except Exception as e:
|
116 |
print(e)
|
117 |
return images
|
|
|
384 |
with gr.Column(scale=3, min_width=200):
|
385 |
submit = gr.Button("Search embedding space")
|
386 |
with gr.Row():
|
387 |
+
output = gr.Gallery(label="Closest images in Laion 5b using kNN", show_label=True)
|
388 |
|
389 |
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
|
390 |
embedding_power_state = gr.State(value=[1. for i in range(max_tabs)])
|
|
|
400 |
|
401 |
# submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
|
402 |
submit.click(main, inputs= [average_embedding_base64, n_samples], outputs=output)
|
403 |
+
output.style(grid=[4], height="auto")
|
404 |
|
405 |
with gr.Row():
|
406 |
gr.Markdown(
|
|
|
411 |
### Initial Features
|
412 |
|
413 |
- Combine up to 10 Images and/or text inputs to create an average embedding space.
|
414 |
+
- Search the laion 5b images via a kNN search
|
415 |
|
416 |
### Known limitations
|
417 |
|
|
|
419 |
|
420 |
### Acknowledgements
|
421 |
|
422 |
+
- I heavily build on [clip-retrieval](https://rom1504.github.io/clip-retrieval/) and use their API. Please [cite](https://github.com/rom1504/clip-retrieval#citation) the authors if you use this work.
|
423 |
- [CLIP](https://openai.com/blog/clip/)
|
424 |
- [Stable Diffusion](https://github.com/CompVis/stable-diffusion)
|
425 |
|