test the api
Browse files- api_test.py +82 -0
api_test.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gradio_client import Client
|
2 |
+
import time
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from api_helper import preprocess_image, encode_numpy_array
|
8 |
+
clip_image_size = 224
|
9 |
+
|
10 |
+
client = Client("http://127.0.0.1:7860/")
|
11 |
+
|
12 |
+
print("do we have cuda", torch.cuda.is_available())
|
13 |
+
|
14 |
+
def test_text():
|
15 |
+
result = client.predict(
|
16 |
+
"Howdy!", # str representing string value in 'Input' Textbox component
|
17 |
+
api_name="/text_to_embeddings"
|
18 |
+
)
|
19 |
+
return(result)
|
20 |
+
|
21 |
+
def test_image():
|
22 |
+
result = client.predict(
|
23 |
+
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str representing filepath or URL to image in 'Image Prompt' Image component
|
24 |
+
api_name="/image_to_embeddings"
|
25 |
+
)
|
26 |
+
return(result)
|
27 |
+
|
28 |
+
def test_image_as_payload(payload):
|
29 |
+
result = client.predict(
|
30 |
+
payload, # image as string payload
|
31 |
+
api_name="/image_as_payload_to_embeddings"
|
32 |
+
)
|
33 |
+
return(result)
|
34 |
+
|
35 |
+
# performance test for text
|
36 |
+
start = time.time()
|
37 |
+
for i in range(100):
|
38 |
+
test_text()
|
39 |
+
end = time.time()
|
40 |
+
# print average time in seconds and in milliseconds and number of predictions per second
|
41 |
+
print("Average time for text: ", (end - start) / 100, "s")
|
42 |
+
print("Average time for text: ", (end - start) * 10, "ms")
|
43 |
+
print("Number of predictions per second for text: ", 1 / ((end - start) / 100))
|
44 |
+
|
45 |
+
# performance test for image
|
46 |
+
start = time.time()
|
47 |
+
for i in range(100):
|
48 |
+
test_image()
|
49 |
+
end = time.time()
|
50 |
+
# print average time in seconds and in milliseconds
|
51 |
+
print("Average time for image: ", (end - start) / 100, "s")
|
52 |
+
print("Average time for image: ", (end - start) * 10, "ms")
|
53 |
+
print("Number of predictions per second for image: ", 1 / ((end - start) / 100))
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
test_image_url = "https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"
|
58 |
+
# download image from url
|
59 |
+
import requests
|
60 |
+
from PIL import Image
|
61 |
+
from io import BytesIO
|
62 |
+
response = requests.get(test_image_url)
|
63 |
+
input_image = Image.open(BytesIO(response.content))
|
64 |
+
input_image = input_image.convert('RGB')
|
65 |
+
# convert image to numpy array
|
66 |
+
input_image = np.array(input_image)
|
67 |
+
|
68 |
+
|
69 |
+
if input_image.shape[0] > clip_image_size or input_image.shape[1] > clip_image_size:
|
70 |
+
input_image = preprocess_image(input_image, clip_image_size)
|
71 |
+
payload = encode_numpy_array(input_image)
|
72 |
+
|
73 |
+
# performance test for image as payload
|
74 |
+
start = time.time()
|
75 |
+
for i in range(100):
|
76 |
+
test_image_as_payload(payload)
|
77 |
+
end = time.time()
|
78 |
+
# print average time in seconds and in milliseconds
|
79 |
+
print("Average time for image as payload: ", (end - start) / 100, "s")
|
80 |
+
print("Average time for image as payload: ", (end - start) * 10, "ms")
|
81 |
+
print("Number of predictions per second for image as payload: ", 1 / ((end - start) / 100))
|
82 |
+
|