refactor clip_app_client into an api class and clip_app_performance_test
Browse files- experimental/clip_app_client.py +94 -140
- experimental/clip_app_performance_test.py +168 -0
experimental/clip_app_client.py
CHANGED
@@ -1,146 +1,100 @@
|
|
1 |
-
# File name: graph_client.py
|
2 |
-
from concurrent.futures import ThreadPoolExecutor
|
3 |
-
import json
|
4 |
import os
|
5 |
import numpy as np
|
6 |
import requests
|
7 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8 |
-
import
|
9 |
-
|
10 |
import torch
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
)
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# print (f"{n_result} : {len(result[0])}")
|
105 |
-
|
106 |
-
if __name__ == "__main__":
|
107 |
-
n_calls = 300
|
108 |
-
|
109 |
-
# test text
|
110 |
-
# n_calls = 1
|
111 |
-
numbers = list(range(n_calls))
|
112 |
-
start_time = time.monotonic()
|
113 |
-
process(numbers, _send_text_request)
|
114 |
-
end_time = time.monotonic()
|
115 |
-
total_time = end_time - start_time
|
116 |
-
avg_time_ms = total_time / n_calls * 1000
|
117 |
-
calls_per_sec = n_calls / total_time
|
118 |
-
print(f"Text...")
|
119 |
-
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
120 |
-
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
121 |
-
|
122 |
-
# test image url
|
123 |
-
# n_calls = 1
|
124 |
-
numbers = list(range(n_calls))
|
125 |
-
start_time = time.monotonic()
|
126 |
-
process(numbers, _send_image_url_request)
|
127 |
-
end_time = time.monotonic()
|
128 |
-
total_time = end_time - start_time
|
129 |
-
avg_time_ms = total_time / n_calls * 1000
|
130 |
-
calls_per_sec = n_calls / total_time
|
131 |
-
print(f"Image passing url...")
|
132 |
-
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
133 |
-
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
134 |
-
|
135 |
-
# test image as vector
|
136 |
-
# n_calls = 1
|
137 |
-
numbers = list(range(n_calls))
|
138 |
-
start_time = time.monotonic()
|
139 |
-
process(numbers, _send_preprocessed_image_request)
|
140 |
-
end_time = time.monotonic()
|
141 |
-
total_time = end_time - start_time
|
142 |
-
avg_time_ms = total_time / n_calls * 1000
|
143 |
-
calls_per_sec = n_calls / total_time
|
144 |
-
print(f"Preprocessed image...")
|
145 |
-
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
146 |
-
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import numpy as np
|
3 |
import requests
|
4 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
import torch
|
8 |
|
9 |
+
from clip_retrieval.load_clip import load_clip, get_tokenizer
|
10 |
+
|
11 |
+
|
12 |
+
class ClipAppClient:
|
13 |
+
"""
|
14 |
+
A class to handle generating embeddings using the OpenAI CLIP model.
|
15 |
+
|
16 |
+
clip_embeddings = ClipEmbeddings()
|
17 |
+
|
18 |
+
test_image_url = "https://example.com/image.jpg"
|
19 |
+
preprocessed_image = clip_embeddings.preprocess_image(test_image_url)
|
20 |
+
|
21 |
+
text = "A beautiful landscape"
|
22 |
+
text_embeddings = clip_embeddings.text_to_embedding(text)
|
23 |
+
|
24 |
+
image_embeddings = clip_embeddings.image_url_to_embedding(test_image_url)
|
25 |
+
|
26 |
+
preprocessed_image_embeddings = clip_embeddings.preprocessed_image_to_embedding(preprocessed_image)
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self, clip_model="ViT-L/14", device=None):
|
30 |
+
self.clip_model = clip_model
|
31 |
+
self.device = device or ("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
+
print("using device", self.device)
|
33 |
+
self.model, self.preprocess = load_clip(clip_model, use_jit=True, device=self.device)
|
34 |
+
self.tokenizer = get_tokenizer(clip_model)
|
35 |
+
|
36 |
+
def preprocess_image(self, image_url):
|
37 |
+
"""
|
38 |
+
Preprocess an image from a given URL.
|
39 |
+
|
40 |
+
:param image_url: str, URL of the image to preprocess
|
41 |
+
:return: torch.Tensor, preprocessed image
|
42 |
+
"""
|
43 |
+
response = requests.get(image_url)
|
44 |
+
input_image = Image.open(BytesIO(response.content)).convert('RGB')
|
45 |
+
input_image = np.array(input_image)
|
46 |
+
input_im = Image.fromarray(input_image)
|
47 |
+
prepro = self.preprocess(input_im).unsqueeze(0).cpu()
|
48 |
+
return prepro
|
49 |
+
|
50 |
+
def text_to_embedding(self, text):
|
51 |
+
"""
|
52 |
+
Convert a given text to an embedding using the OpenAI CLIP model.
|
53 |
+
|
54 |
+
:param text: str, text to convert to an embedding
|
55 |
+
:return: str, text embeddings
|
56 |
+
"""
|
57 |
+
payload = {
|
58 |
+
"text": ('str', text, 'application/octet-stream'),
|
59 |
+
}
|
60 |
+
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
|
61 |
+
response = requests.post(url, files=payload)
|
62 |
+
embeddings = response.text
|
63 |
+
return embeddings
|
64 |
+
|
65 |
+
def image_url_to_embedding(self, image_url):
|
66 |
+
"""
|
67 |
+
Convert an image URL to an embedding using the OpenAI CLIP model.
|
68 |
+
|
69 |
+
:param image_url: str, URL of the image to convert to an embedding
|
70 |
+
:return: str, image embeddings
|
71 |
+
"""
|
72 |
+
payload = {
|
73 |
+
"image_url": ('str', image_url, 'application/octet-stream'),
|
74 |
+
}
|
75 |
+
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
|
76 |
+
response = requests.post(url, files=payload)
|
77 |
+
embeddings = response.text
|
78 |
+
return embeddings
|
79 |
+
|
80 |
+
def preprocessed_image_to_embedding(self, image):
|
81 |
+
"""
|
82 |
+
Convert a preprocessed image to an embedding using the OpenAI CLIP model.
|
83 |
+
|
84 |
+
:param image: torch.Tensor, preprocessed image
|
85 |
+
:return: str, image embeddings
|
86 |
+
"""
|
87 |
+
key = "preprocessed_image"
|
88 |
+
data_bytes = image.numpy().tobytes()
|
89 |
+
shape_bytes = np.array(image.shape).tobytes()
|
90 |
+
dtype_bytes = str(image.dtype).encode()
|
91 |
+
payload = {
|
92 |
+
key: ('tensor', data_bytes, 'application/octet-stream'),
|
93 |
+
'shape': ('shape', shape_bytes, 'application/octet-stream'),
|
94 |
+
'dtype': ('dtype', dtype_bytes, 'application/octet-stream'),
|
95 |
+
}
|
96 |
+
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
|
97 |
+
response = requests.post(url, files=payload)
|
98 |
+
embeddings = response.text
|
99 |
+
return embeddings
|
100 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
experimental/clip_app_performance_test.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import requests
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from clip_app_client import ClipAppClient
|
11 |
+
|
12 |
+
test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
|
13 |
+
english_text = (
|
14 |
+
"It was the best of times, it was the worst of times, it was the age "
|
15 |
+
"of wisdom, it was the age of foolishness, it was the epoch of belief"
|
16 |
+
)
|
17 |
+
|
18 |
+
app_client = ClipAppClient()
|
19 |
+
preprocessed_image = app_client.preprocess_image(test_image_url)
|
20 |
+
|
21 |
+
def _send_text_request(number):
|
22 |
+
embeddings = app_client.text_to_embedding(english_text)
|
23 |
+
return number, embeddings
|
24 |
+
|
25 |
+
def _send_image_url_request(number):
|
26 |
+
embeddings = app_client.image_url_to_embedding(test_image_url)
|
27 |
+
return number, embeddings
|
28 |
+
|
29 |
+
def _send_preprocessed_image_request(number):
|
30 |
+
embeddings = app_client.preprocessed_image_to_embedding(preprocessed_image)
|
31 |
+
return number, embeddings
|
32 |
+
|
33 |
+
def process(numbers, send_func, max_workers=10):
|
34 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
35 |
+
futures = [executor.submit(send_func, number) for number in numbers]
|
36 |
+
for future in as_completed(futures):
|
37 |
+
n_result, result = future.result()
|
38 |
+
result = json.loads(result)
|
39 |
+
print (f"{n_result} : {len(result[0])}")
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
n_calls = 300
|
43 |
+
|
44 |
+
# test text
|
45 |
+
numbers = list(range(n_calls))
|
46 |
+
start_time = time.monotonic()
|
47 |
+
process(numbers, _send_text_request)
|
48 |
+
end_time = time.monotonic()
|
49 |
+
total_time = end_time - start_time
|
50 |
+
avg_time_ms = total_time / n_calls * 1000
|
51 |
+
calls_per_sec = n_calls / total_time
|
52 |
+
print(f"Text...")
|
53 |
+
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
54 |
+
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
55 |
+
|
56 |
+
# test image url
|
57 |
+
numbers = list(range(n_calls))
|
58 |
+
start_time = time.monotonic()
|
59 |
+
process(numbers, _send_image_url_request)
|
60 |
+
end_time = time.monotonic()
|
61 |
+
total_time = end_time - start_time
|
62 |
+
avg_time_ms = total_time / n_calls * 1000
|
63 |
+
calls_per_sec = n_calls / total_time
|
64 |
+
print(f"Image passing url...")
|
65 |
+
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
66 |
+
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
67 |
+
|
68 |
+
# test image as vector
|
69 |
+
numbers = list(range(n_calls))
|
70 |
+
start_time = time.monotonic()
|
71 |
+
process(numbers, _send_preprocessed_image_request)
|
72 |
+
end_time = time.monotonic()
|
73 |
+
total_time = end_time - start_time
|
74 |
+
avg_time_ms = total_time / n_calls * 1000
|
75 |
+
calls_per_sec = n_calls / total_time
|
76 |
+
print(f"Preprocessed image...")
|
77 |
+
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
78 |
+
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
79 |
+
|
80 |
+
|
81 |
+
# from concurrent.futures import ThreadPoolExecutor
|
82 |
+
# import json
|
83 |
+
# import os
|
84 |
+
# import numpy as np
|
85 |
+
# import requests
|
86 |
+
# from concurrent.futures import ThreadPoolExecutor, as_completed
|
87 |
+
# import time
|
88 |
+
|
89 |
+
# import torch
|
90 |
+
|
91 |
+
# # hack for debugging, set HTTP_ADDRESS to "http://127.0.0.1:8000/"
|
92 |
+
# # os.environ["HTTP_ADDRESS"] = "http://192.168.7.79:8000"
|
93 |
+
|
94 |
+
# test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
|
95 |
+
# english_text = (
|
96 |
+
# "It was the best of times, it was the worst of times, it was the age "
|
97 |
+
# "of wisdom, it was the age of foolishness, it was the epoch of belief"
|
98 |
+
# )
|
99 |
+
|
100 |
+
# preprocessed_image = preprocess_image(test_image_url)
|
101 |
+
|
102 |
+
# def _send_text_request(number):
|
103 |
+
# embeddings = text_to_embedding(english_text)
|
104 |
+
# return number, embeddings
|
105 |
+
|
106 |
+
# def _send_image_url_request(number):
|
107 |
+
# embeddings = image_url_to_embedding(test_image_url)
|
108 |
+
# return number, embeddings
|
109 |
+
|
110 |
+
# def _send_preprocessed_image_request(number):
|
111 |
+
# embeddings = preprocessed_image_to_embedding(preprocessed_image)
|
112 |
+
# return number, embeddings
|
113 |
+
|
114 |
+
# def process(numbers, send_func, max_workers=10):
|
115 |
+
# with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
116 |
+
# futures = [executor.submit(send_func, number) for number in numbers]
|
117 |
+
# for future in as_completed(futures):
|
118 |
+
# n_result, result = future.result()
|
119 |
+
# result = json.loads(result)
|
120 |
+
# print (f"{n_result} : {len(result[0])}")
|
121 |
+
|
122 |
+
# # def process_text(numbers, max_workers=10):
|
123 |
+
# # for n in numbers:
|
124 |
+
# # n_result, result = send_text_request(n)
|
125 |
+
# # result = json.loads(result)
|
126 |
+
# # print (f"{n_result} : {len(result[0])}")
|
127 |
+
|
128 |
+
# if __name__ == "__main__":
|
129 |
+
# n_calls = 300
|
130 |
+
|
131 |
+
# # test text
|
132 |
+
# # n_calls = 1
|
133 |
+
# numbers = list(range(n_calls))
|
134 |
+
# start_time = time.monotonic()
|
135 |
+
# process(numbers, _send_text_request)
|
136 |
+
# end_time = time.monotonic()
|
137 |
+
# total_time = end_time - start_time
|
138 |
+
# avg_time_ms = total_time / n_calls * 1000
|
139 |
+
# calls_per_sec = n_calls / total_time
|
140 |
+
# print(f"Text...")
|
141 |
+
# print(f" Average time taken: {avg_time_ms:.2f} ms")
|
142 |
+
# print(f" Number of calls per second: {calls_per_sec:.2f}")
|
143 |
+
|
144 |
+
# # test image url
|
145 |
+
# # n_calls = 1
|
146 |
+
# numbers = list(range(n_calls))
|
147 |
+
# start_time = time.monotonic()
|
148 |
+
# process(numbers, _send_image_url_request)
|
149 |
+
# end_time = time.monotonic()
|
150 |
+
# total_time = end_time - start_time
|
151 |
+
# avg_time_ms = total_time / n_calls * 1000
|
152 |
+
# calls_per_sec = n_calls / total_time
|
153 |
+
# print(f"Image passing url...")
|
154 |
+
# print(f" Average time taken: {avg_time_ms:.2f} ms")
|
155 |
+
# print(f" Number of calls per second: {calls_per_sec:.2f}")
|
156 |
+
|
157 |
+
# # test image as vector
|
158 |
+
# # n_calls = 1
|
159 |
+
# numbers = list(range(n_calls))
|
160 |
+
# start_time = time.monotonic()
|
161 |
+
# process(numbers, _send_preprocessed_image_request)
|
162 |
+
# end_time = time.monotonic()
|
163 |
+
# total_time = end_time - start_time
|
164 |
+
# avg_time_ms = total_time / n_calls * 1000
|
165 |
+
# calls_per_sec = n_calls / total_time
|
166 |
+
# print(f"Preprocessed image...")
|
167 |
+
# print(f" Average time taken: {avg_time_ms:.2f} ms")
|
168 |
+
# print(f" Number of calls per second: {calls_per_sec:.2f}")
|