sohojoe commited on
Commit
ed56b85
1 Parent(s): 1f31cd7

add image_as_payload_to_embeddings

Browse files
Files changed (1) hide show
  1. app.py +84 -1
app.py CHANGED
@@ -9,13 +9,13 @@ import math
9
  # from transformers import CLIPTextModel, CLIPTokenizer
10
  import os
11
 
12
-
13
  # clip_model_id = "openai/clip-vit-large-patch14-336"
14
  # clip_retrieval_indice_name, clip_model_id ="laion5B-L-14", "/laion/CLIP-ViT-L-14-laion2B-s32B-b82K"
15
  clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
16
  # available models = ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
17
  # clip_model="ViT-B/32"
18
  clip_model="ViT-L/14"
 
19
  clip_model_id ="laion5B-L-14"
20
 
21
 
@@ -35,6 +35,62 @@ def debug_print(*args, **kwargs):
35
  if debug_print_on:
36
  print(*args, **kwargs)
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  def image_to_embedding(input_im):
39
  # debug_print("image_to_embedding")
40
  input_im = Image.fromarray(input_im)
@@ -181,6 +237,16 @@ def on_image_load_update_embeddings(image_data):
181
  # return gr.Text.update(embeddings_b64)
182
  return embeddings_b64
183
 
 
 
 
 
 
 
 
 
 
 
184
  def on_prompt_change_update_embeddings(prompt):
185
  debug_print("on_prompt_change_update_embeddings")
186
  # prompt to embeddings
@@ -578,6 +644,23 @@ UI elements to mock out the API
578
  _output = gr.Textbox(value="", lines=2, label="Output")
579
  _btn = gr.Button(value="Submit")
580
  _btn.click(on_image_load_update_embeddings, inputs=_input, outputs=[_output], api_name="image_to_embeddings")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581
 
582
  # ![Alt Text](file/pup1.jpg)
583
 
 
9
  # from transformers import CLIPTextModel, CLIPTokenizer
10
  import os
11
 
 
12
  # clip_model_id = "openai/clip-vit-large-patch14-336"
13
  # clip_retrieval_indice_name, clip_model_id ="laion5B-L-14", "/laion/CLIP-ViT-L-14-laion2B-s32B-b82K"
14
  clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
15
  # available models = ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
16
  # clip_model="ViT-B/32"
17
  clip_model="ViT-L/14"
18
+ clip_image_size = 224
19
  clip_model_id ="laion5B-L-14"
20
 
21
 
 
35
  if debug_print_on:
36
  print(*args, **kwargs)
37
 
38
+ # support sending images as base64
39
+
40
+ def encode_numpy_array(image_np):
41
+ import base64
42
+ import json
43
+ # Flatten the numpy array and convert it to bytes
44
+ image_bytes = image_np.tobytes()
45
+
46
+ # Encode the byte data as base64
47
+ encoded_image = base64.b64encode(image_bytes).decode()
48
+ payload = {
49
+ "encoded_image": encoded_image,
50
+ "width": image_np.shape[1],
51
+ "height": image_np.shape[0],
52
+ "channels": image_np.shape[2],
53
+ }
54
+ payload_json = json.dumps(payload)
55
+ return payload_json
56
+
57
+ def decode_numpy_array(payload):
58
+ import base64
59
+ import json
60
+ payload_json = json.loads(payload)
61
+ # payload_json = payload.json()
62
+ encoded_image = payload_json["encoded_image"]
63
+ width = payload_json["width"]
64
+ height = payload_json["height"]
65
+ channels = payload_json["channels"]
66
+ # Decode the base64 data
67
+ decoded_image = base64.b64decode(encoded_image)
68
+
69
+ # Convert the byte data back to a NumPy array
70
+ image_np = np.frombuffer(decoded_image, dtype=np.uint8).reshape(height, width, channels)
71
+
72
+ return image_np
73
+
74
+
75
+ def preprocess_image(image_np, max_size=224):
76
+ from torchvision.transforms import Compose, Resize, CenterCrop
77
+ # Convert the numpy array to a PIL image
78
+ image = Image.fromarray(image_np)
79
+
80
+ # Define the transformation pipeline
81
+ transforms = Compose([
82
+ Resize(max_size, interpolation=Image.BICUBIC),
83
+ CenterCrop(max_size),
84
+ ])
85
+
86
+ # Apply the transformations to the image
87
+ image = transforms(image)
88
+
89
+ # Convert the PIL image back to a numpy array
90
+ image_np = np.array(image)
91
+
92
+ return image_np
93
+
94
  def image_to_embedding(input_im):
95
  # debug_print("image_to_embedding")
96
  input_im = Image.fromarray(input_im)
 
237
  # return gr.Text.update(embeddings_b64)
238
  return embeddings_b64
239
 
240
+ def on_image_as_payload_update_embeddings(payload):
241
+ debug_print("on_image_as_payload_update_embeddings")
242
+ if payload is None or payload == "":
243
+ return ''
244
+ image_data = decode_numpy_array(payload)
245
+ embeddings = image_to_embedding(image_data)
246
+ embeddings_b64 = embedding_to_base64(embeddings)
247
+ # return gr.Text.update(embeddings_b64)
248
+ return embeddings_b64
249
+
250
  def on_prompt_change_update_embeddings(prompt):
251
  debug_print("on_prompt_change_update_embeddings")
252
  # prompt to embeddings
 
644
  _output = gr.Textbox(value="", lines=2, label="Output")
645
  _btn = gr.Button(value="Submit")
646
  _btn.click(on_image_load_update_embeddings, inputs=_input, outputs=[_output], api_name="image_to_embeddings")
647
+ with gr.Row():
648
+ def _on_image_load(input_image):
649
+ debug_print("_on_image_load")
650
+ # resize if size is bigger than clip_image_size
651
+ if input_image.shape[0] > clip_image_size or input_image.shape[1] > clip_image_size:
652
+ input_image = preprocess_image(input_image, clip_image_size)
653
+ payload = encode_numpy_array(input_image)
654
+ return payload
655
+
656
+ _input = gr.Image(label="Image Prompt", show_label=True)
657
+ with gr.Accordion(f"Image (base64)", open=False):
658
+ _input_as_texct = gr.Textbox(value="", lines=2, label="Output")
659
+ _input.change(_on_image_load, inputs=_input, outputs=[_input_as_texct])
660
+ with gr.Accordion(f"Embeddings (base64)", open=False):
661
+ _output = gr.Textbox(value="", lines=2, label="Output")
662
+ _btn = gr.Button(value="Submit")
663
+ _btn.click(on_image_as_payload_update_embeddings, inputs=_input_as_texct, outputs=[_output], api_name="image_as_payload_to_embeddings")
664
 
665
  # ![Alt Text](file/pup1.jpg)
666