sohojoe commited on
Commit
efe8b2e
·
1 Parent(s): 74f54c9

tweak how i normalize

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -37,7 +37,7 @@ def image_to_embedding(input_im):
37
  prepro = preprocess(input_im).unsqueeze(0).to(device)
38
  with torch.no_grad():
39
  image_embeddings = model.encode_image(prepro)
40
- # image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True)
41
  image_embeddings_np = image_embeddings.cpu().to(torch.float32).detach().numpy()
42
  return image_embeddings_np
43
 
@@ -45,7 +45,7 @@ def prompt_to_embedding(prompt):
45
  text = tokenizer([prompt]).to(device)
46
  with torch.no_grad():
47
  prompt_embededdings = model.encode_text(text)
48
- # prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True)
49
  prompt_embededdings_np = prompt_embededdings.cpu().to(torch.float32).detach().numpy()
50
  return prompt_embededdings_np
51
 
@@ -90,12 +90,13 @@ def main(
90
  # dowload image
91
  import requests
92
  from io import BytesIO
93
- response = requests.get(result["url"])
94
- if not response.ok:
95
- continue
96
  try:
 
 
 
97
  bytes = BytesIO(response.content)
98
  image = Image.open(bytes)
 
99
  images.append(image)
100
  except Exception as e:
101
  print(e)
@@ -145,7 +146,7 @@ def update_average_embeddings(embedding_base64s_state, embedding_powers):
145
  # final_embedding = final_embedding / num_embeddings
146
 
147
  # normalize embeddings in numpy
148
- # final_embedding /= np.linalg.norm(final_embedding)
149
 
150
  embeddings_b64 = embedding_to_base64(final_embedding)
151
  return embeddings_b64
@@ -292,7 +293,7 @@ with gr.Blocks() as demo:
292
  with gr.Column(scale=5):
293
  gr.Markdown(
294
  """
295
- # Soho-Clip
296
 
297
  A tool for exploring CLIP embedding spaces.
298
 
 
37
  prepro = preprocess(input_im).unsqueeze(0).to(device)
38
  with torch.no_grad():
39
  image_embeddings = model.encode_image(prepro)
40
+ image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True)
41
  image_embeddings_np = image_embeddings.cpu().to(torch.float32).detach().numpy()
42
  return image_embeddings_np
43
 
 
45
  text = tokenizer([prompt]).to(device)
46
  with torch.no_grad():
47
  prompt_embededdings = model.encode_text(text)
48
+ prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True)
49
  prompt_embededdings_np = prompt_embededdings.cpu().to(torch.float32).detach().numpy()
50
  return prompt_embededdings_np
51
 
 
90
  # dowload image
91
  import requests
92
  from io import BytesIO
 
 
 
93
  try:
94
+ response = requests.get(result["url"])
95
+ if not response.ok:
96
+ continue
97
  bytes = BytesIO(response.content)
98
  image = Image.open(bytes)
99
+ image.title = str(result["similarity"]) + ' ' + result["caption"]
100
  images.append(image)
101
  except Exception as e:
102
  print(e)
 
146
  # final_embedding = final_embedding / num_embeddings
147
 
148
  # normalize embeddings in numpy
149
+ final_embedding /= np.linalg.norm(final_embedding)
150
 
151
  embeddings_b64 = embedding_to_base64(final_embedding)
152
  return embeddings_b64
 
293
  with gr.Column(scale=5):
294
  gr.Markdown(
295
  """
296
+ # Soho-Clip Embedding Explorer
297
 
298
  A tool for exploring CLIP embedding spaces.
299